e

U ’
h ot i o
L LY,
AR "{/’///
g

ELEKTRONIK-BAUTEILE

- EscnenstraBe 2 - Postfach 1252 - 8028 Taufkirchen bei Miinchen
Telefon (089) 61208-0 - Telex 522106 - Telefax (0 89) 612 08-2&

http://www.neumueller.com
fritz
Kommentar
Z280 manual missing pages repaired (5-100_5-101 are left)

last scanned version at:

http://oldcomputers.dyndns.org/public/pub/rechner/zilog/z280/manual/

fritz
Kommentar

Table 6(Contents

~ Chapter 1. 7280 Architectural Overview

1
1

1
2

1.3

1.4

2.1 IntI‘OdUCtion e ® o o o © e o0 e o e ® o & ° o & e © @ 6 o ° "B o o 0o 2"1 |
202 CPU RegiStel‘ Flle ® © o e e e o ©® 0 O e & © o © ¢ 6 S o o © ¢ o & o 2"‘1
2.3 CPU COﬂtl‘Ol RBQIStBl‘S ® ® * ® ™ ® ° ® ° o) ® o) ° ° ° ® ® ®) o') 2"‘2
2.4 Memory ADAressS SPAcCeS « « o o o o o o o o 2 o o o o o s o o o o o o 2=3
205 I/O Add[’eSS Space ° ° o ® °® ®) ® ® ® ° . °) ® ® ® °) ® ° ® ® ®) 2"'4
Chapter 3. CPU Control Registers
3.1 IntPOdUCtIOH e ® o e e * O e o ¢ o o o ° o ® o O ° ¢ e © s & o o o 3-1
3.2 System Configuration Registers . « « ¢« ¢« ¢ ¢ o ¢« & e
3.2.1 Bus Timing and Initialization Register . . . S
3.2.2 Bus Timing and Control Register « + ¢« ¢« ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ o « 3=2
30203 LOCGl Add[‘eSS RBngtel‘ ® e e) ® e e ®] ® o L]] °)]] ° 3“3
3.204 CBChe COOtI‘Ol RengteP °] .] o .]] . e . . ° ° . °] . 3"3
/

Introduction .« o o o ¢ o o o
MPU Architectural features .

System and User Modes

Address Spaces
Data Types

Addressing Modes

[nstruction Set . . .

Exception Conditions

Memory Management . .

Cache Memory

Refresh « o o o o o o

On-Chip Peripherals .
Multiprocessor Mode . .

Extended Instruction Facility

Benefits of the Architecture

»
- - o=d -—d emd

Summary [] ® [[] [J [] [] ® [J ® [] ® .' -. ® ® [} | [J ® [] [] [] ® ® .. ® ®)

4
4
4
4
4

e o
Wi & W=

High Throughput & ..

Integration of System Functions
Operat ing System Support

Code Density

. Chapter 2. Address Spaces

Compiler Efficiency . « ¢« o« « &

—
| ! ! | | |
N NN - N -

= ed e ed ed ad e e e o =
O L
S & & & W W W W

|
L&

Table of Contents (Continued)

3.3 System Status Registers . .

W W W W W W
e o

.3.1 Master Status Register
«3.2 Interrupt Status Register
3.3 Interrupt/Trap Vector Table Pointer
3.4 1/0 Page Register . « « ¢« ¢ ¢« « & &
3.5 Trap Control Register . . « « « « &
.3.6

System Stack Limit Register

Chapter 4. Addressing Modes and Data lTypes

4.1

Introduct ion

4.2 Addressing Mode Descriptions . . .

-~
~

4.3 Data Types

Register (R, RX) . C .
Immediate (IM)
Indirect Register (IR) . .
Direct Address (DA)
Indexed (X) « ¢ ¢ ¢ o o o &
Short Index (SX) . . « « .
Relative Address (RA) . . .
Stack Pointer Relative (SR)
Base Index (BX) ¢ « « . « .

& e & s
[J

N NN DN NDNDNDNDS
®

O O O N E WN =

Chapter 5. Instruction Set

5.1
5.2

5.3

5.3.2

Introduction . . . ¢ ¢« ¢ ¢ ¢ ¢ ¢ o &
Processor Flags . « « ¢ ¢ ¢« ¢« ¢ o &
Carry Flag (C) « ¢« « « o« « &
Add/Subtract Flag (N) . . .
Parity/Overflow Flag (P/V) .
Hal f-Carry Flag (H)
Zero Flag (Z) .+ ¢ o o o o &
Sign Flag (S) . . . « « . .
Condition Codes

(G RV BV, BV, AV BV R
e

NN NNDNDNDN
L]

NN N E W -

Instruction Execution and Exceptions

5.3.1

1v

Instruction Execution and Inteftupts
Instruction Execution and Traps . .

e o e o o o o o'o e o & o o-o‘ e o o olo 3"4

3-4

3-4.
3-5
3-5
3-5
3-6

5-1 .

5-1

5-1
5-1
5-2
5-2
5-2
5-2
5-2

5-3

5-3
5-3

5.4 Instruction Set Functional Groups &

~ 5.4.10

5.5 Notation and Binary Encoding
.. 5.6 Instruction Set

5.4.1
5.4.2
5.4.3
5.4.4

5.4.5
5.4.6

5.4.7
5.4.8
5.4.9

8-bit Load Group c o o o o o o
16-bit Load and Exchange Group .
Block Transfer and Search Group

8-bit Arithmetic and Logic Group
16-bit Arithmetic Group

Bit Manipulation, Rotate and Shift

Program Control Group
Input/Output Instruction Group .
CPU Control Group ¢« « ¢ ¢« o o @
Extended Instruction Group . . .

Chaptét 6. Interrupts and Traps

6.1
6.2

6.3

“604

Introduction . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o
Interrupts . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o
6.2.1 - Interrupt Mode 0 « . &
6.2.2 Interrupt Mode 1 . . . ¢« ¢« ¢« &
6.2.3 Interrupt Mode 2 &
6.2.4 interrupt Mode 3 . . . ¢ ¢ o
lraps ©c o o o o o o o 6 o s o o o o o
6.3.1 Extended Instruction Trap . . .
6.3.2 Privileged Instruction Trap . .

" "6.3.3 System Call Trap « « &
6.3.4 Access Violation Trap « « « . .
6.3.5 System Stack Overflow Warning
6.3.6 Division Exception Trap . .« « &
6.3.7 Single-Step Trap . ¢« ¢« ¢ ¢ & &
6.3.8

Breakpoint-on-Halt Trap . . .« .

Interrupt and Trap Handlidg c o o s e s

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

Interrupt Acknowledge
Status Saving . . . ¢« . ¢ ¢ o o
Loading New Program Status . .
Executing the Service Routine .
Returning from a Service Routine

Interrupt/Trap Vector Table &
The Fatal Condition . « ¢« ¢ ¢ ¢ ¢ ¢ o« o &

4

5-10

5-10
5-13

6-1
6-1

6-2
6-2
6-2
6-3

6-4
6-4
6-5
6-5
6-5
6-5 -
6-5
6-6

6-6 -

6-6
6-7
6-7
6-9
6-9

6-11

Table of Contents (Continued)

Chapter 7. Memory Management Unit | | ' | ' | L 7

7.1 Introduction . ¢ &« ¢ ¢ ¢ ¢« o ¢ o o o o o
7.2 MMU Architecture .« ¢ o « o o o o o o o o o o o o o o o o
7.3 Page Description RegisSters . . o o « o o o o o o o o o o o o o o o 1-2
7.4 Address Translation . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o ¢ o o o » o o o o 1=3

7.4.1 Address Translation without Program/Data Separation . .
. 7.4.2 Address Translation with Program/Data Separation 7-4

7.5 MMU Control RegiSters . . « o o o « « o .
7.6 Accessing Page Descriptor Registers

.
.
o
.
.
o
o
.
.
o
.
.
o
.
o
.
~
o

7.6.1 Descriptor Select POt « v ¢ ¢ ¢ o ¢ o o o o o o o o o o » 1-6
7.6.2 BlOCk Move POI‘t e ©® & e o o © & ¢ B S 6 ©° 9 © & o o o o o o 7"6
7 6 3 Invalidation PO[‘t e o o .o o o o ¢ o o 5 o o o o o e o o o o 7"6

7.7 Instruction %orts [] [} ® [] ® [J [® o o ® [] ® [J ® [] [J [® [] [] [] [J [} 7-7

Chapter 8. On-Chip Memory

8.1 Introduction

[J e [[] Q\. ® L J [] [] [] [] ® ® e @ [] [] [] [] [] [] [[[e ® 8-1

802 CSCheVemOI‘ymde..-.'....o..'..............8-1
8.3 Fixed-Address Mode . . « ¢ & ¢ o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o o o o« o B-4

Chapter 9. On-Chip Peripherals | . | - 9

9.1 Introduction . ¢« ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o &
9.2 Clock Oscillator . « ¢« ¢ ¢« ¢ o o o o ¢ o o o o o
9.3 Refresh Controller . ¢« ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o ¢ o o o o 06 6 0 ¢ o o & 91
9.4 Counter/Timers . « o« o o o o c e e o s s e s s s s s s e s e s e 92

0000000009-1

9.4.1 Counter/Timer Operating Modes . « « ¢« & o ¢« o o 'c o o o 9-3
9.4.2 Gates and Triggers . « ¢ o o o o s o o o o o o o o
9.4.3 Terminal Count Condition . v o ¢ o o o o o o &
9.4.4 Counter/Timer RegiSters « « o« ¢ ¢ o o ¢ o o o o o ¢ o o o « 9-4
9.4.5 Linking Counter/Timers . « o « ¢ o o o o o o o o &
9.4.6 Counter/Timer Sequence of Events . ¢« ¢ ¢ ¢ ¢ o o o o o o o 9=7

000000000000000009-9

9.5 DMA Channels . . « o o ;

, 9-10

9.5.1 lypes of DMA Operations « « o o o o o o o o o o o o o o o o
9.5.2 DMA Transfer Modes .« ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o o o o o o o o« o o » 9-10
9.5.3 End-0f-ProCessS .« o ¢ o o o o o o o ¢ o o o s o o o s s o & 9-1
i 9.5.4. Priority Resolution « & C e e e e e e e e e e . 9=12
9.5.5 DMA LINKING o ¢ o o o o o o o o o ¢ o o o o o s s o o s o o 9-12

9.5.6 DMA Registers . « « o o v o o o o ¢ o o o ¢ ¢ o o o o o o s 9-13
9.5.7 DMA Sequence of EventS o « ¢ ¢ ¢« ¢« ¢ o ¢ o o o o o o s s o 9-15
9.5.8 DMA Programming: Linked DMAsS . . . ¢ ¢« ¢ ¢ ¢« ¢ ¢ o ¢« o o« o« 9-16
9.5.9 DMA Programning: DMAs Linked to UART . . &« ¢« ¢ ¢ ¢ o o o o 9-17

9‘6 UART L 2 [] [] [[] [] [® ® [] ® [] o ® L J ® .- | [] [] .. ® [] ® [] [] L] [] [] [] L] [] 9-17

9
9
9
9

Transmitter Operation .

.6.1
.6.2 Receiver Operation . .
.6.3 UART Registers
.6.4

UART Operation

9-17
9-18
9-18

9-21 .

9.7 UART Bootstrapping Option « « ¢« ¢« ¢« ¢ ¢ ¢ & « o Ve e e e e e .. 921

Chapter 10. Multiprocessor Configurations

10.1

10.2
10.3

10.4
10.5

Chapter 11. Reset

| Chapfet 12. 780 Bus External Interface

12.1

12,2
12,3

12.4
12.5

12.6

10.5.1
10.5.2 Extended Instruction Execution Sequence

12.6.3 Global Bus Requests

Ve

INtroduction « « o o o o o o o o o @
Slave ProcesSSOrS ¢« ¢ o o ¢ o ¢ o o o
Tightly -Coupled Multiple Processors

10.3.1
10.3.2

10.3.3

Bus Request Protocols
Loosely Coupled Multiple CPUs

Extended Instructions

Introduction ... s e e e e oo
Bus Operations . . « ¢« ¢« « + &
Pin Descriptions . « ¢« ¢« ¢ o &

Bus Configuration and Timing .

Transactlons « o ¢ ¢ o o o o o

The Local Addféss Register .

Coprocessors and the Extended Processing Architecture

t .
.

12.5.1 Memory Transactions « « &
12.5.2 RETI Transactions .« i ¢ o o « o o
12.5.3 Halt and Refresh Transactions . .
12.5.4 I/0 Transactions « « o « o o o o &
12.5.5 Interrupt Acknowledge Transactions
12.5.6 DMA Flyby Transactions

Request s [] [] [] [] ; ® [] [L J ® [

12.6.1 Interrupt Requests .
12.6.2 Local Bus Requests .

Examples of the Use of the Global Bus

10-1

10-1
10-2

10-2

10-2
10-4

{

10-6

10-6

10-6
10-7

[] L L] [] [] [] ° .' ® [J [J L L J [J []] [] ® [] [J [J ® [[] [J [] 11-1

12-1

12-2
12-3
12-4
12-4

12-5
12-9
12-9
12-10
12-12
12-13

12-14

12-14 .

12-15
12-15

10

vii

Table' 61 Contents (Continuéd)

Chapter 13. Z-BUS External Interface

T13.1 INtrodUCEION v o v ¢ ¢ o o o o o o o o o o o 8 o o o e e e e e 1321
13.2 Bus Operations . « « o ¢ ¢ o o o ¢ o o o o o o o s o o s o o o oo 1322
13.3 Pin DeSCTIPtiONS « o o o o o o o o o s o o s o o s « o o o o o o o 13=3
13.4 Bus Configurafion and TimiNg « ¢ o o o o o ¢ o o o o o o o o ¢ o o 13-4
13.5 Transactions . o o « o o o o o o o o o s o o o s o o o o o o o o o 13-4

13.5.1 Memory Transactions . . o« « « o o o o o o o o o o o o o o 13=5

13.5.2 Halt and Refresh Transactions . . ¢« ¢« ¢ ¢« ¢« ¢« o« o o« « » «» 13-10
13.5.3 I/0 Transactions o « o o o o o o o o o o o o o o o o o « o« 13-11
13.5.4 Interrupt Acknowledge Transactions « « ¢« ¢« ¢« ¢ ¢ ¢ o o - o 13-13

0 13.5.5 Extended'Processing Unit (EPU) Transactions . . « « « « . 13=14
3 13.506 DMA Fley TI‘&ﬂS&CthﬂS e & o o » e o o 5 o ¢ o B e o o o o 13"‘17

13.6 ReqUéStSOOO;...OO..-..O...’.....OQD.;..0~013-18
13'0601 Intel‘l‘upt RequeStS e o o.o e o o'o ® o‘ e o o o o o e o o o 13“19

130602 LOC&]. BUS RequeStS e o o o o“o'o ® ® © o o e o o o o o o o 13"19
130603 GlObal BUS RequeStS ® ‘o ® © e © e & 9 © ¢ ¢ o © 8 © o o o 13“19

13

~ Appendix A. 780/7280 Compatibility v o v oo v o'e v .o A-l

" Appendix B. Z280 MPU Instruction FormatsB-

. Wix c. IﬂStl‘ll’:ti(l’lS il'l All’ld)etic Or(bl' e o o [o.o ® e o o o o o C-1

"~ Appendix D. Instructions in Numeric Order . . e s s o s o o o o o D=1

!

.': \ Wix E. InStl‘wtim]i.im e o & o o o obo e o o o o o 0 s o o..o. . E-1

. | Appendix F. Compatible Peripheral Famili€S o o o « o « o o o o F=1

’ A . » . .) * . .
. : i °
: . DR N] . . . - . . : . .
- Glossary - - L . - . -
-. * .
. . L. . . X - - . °) . ; ' ’
Index - - : : . S _ . | 11 ~ o :
N . . . ' . . : . K .
: - ‘ ..- . R . . . - *
. - . - .
. . . :
- « °
. . - . N .) .
’ . . : L. .
4 . M . ~
: . . - ’ . - .- ’ B
. . . . * * 1 .
- . : ‘\ e 1 : .
. ’ . . .) l ' . .
.- o . . . c. .
- M.q . . . - > . .
l ; R .
M . ‘e) - -
. . . M . . . r] . ‘
. . ;) . ’ ' -)
. ~ ' : T .) .
. . N) . .
. ' ° . . - N
. . , .. . ¢
. a . . .
. '
[} c o ..
. . - . ¢ . “r
M
1 . N Ct ' . ’) ' *

viil

LIST OF ILLUSTRATIONS AND TABLES

Figure
Number

1-1.
2-1.
2-2.
2-3.
2-4,
3-1.
3-2.
3-3,
3.4,
3-5,
3-6.
3-7.
3-8,
3-9,
3.10.
5-1,
-1.
-2.
3

N 0N ON

|
- o \C O NN NN B WWN =2 ca W iN e
®

-—d
N = O o
°

C N L\ L L L€ L oo NN NV
i

\C
!

\C
!
—
AV

°

9-14,
9-15.,
9-16.
10-1.
10-2.
10-3.
10-4.
10-5.
10-6.

\ .

Paqge

Number |

BIOCk Dlagram‘.'...;.‘...‘.O...‘.......Q....Q....OQ....O..0001 1
Reglster Flle Organlzatlon......O............C...O.......0...2 1

CPU ContrOI RegiSterSooooooooooooooooooooooo000000000000000002"3

" Numbering of Bits Within a Byte..ecceeeeeecoeccocacoccsconccs

Formats, Multiple-Byte Data Elements in Memory.....ccccec..
Bus Timing and Initialization RegisSter...ecececececccecesocs

Bus Timing and Control Register..cccceccecececcoccsccccocsoccse

Local Address Reglster.0.....0.......0...0.........‘..‘...

CaChe ContrOl RGngteroo.étoooooooooooooooooooooooaooooooo

Master Status Reglster..O..O..O...Q.O........Q.....C......

Interrupt Status Registerooooooo.ooocoooooooooooooooooooooo

Interrupt/Trap Vector Table PoOiNter.cceececcecccecoccccaces

I/O Page Register......—..Q....0.0....O............Q.Q..Q..

Trap ContrOI Register........0....0.........'.0..0......O...
System Stack Limit Register..cccececececececcecccccscocscaoc
Flag Register‘.Q......O0.0.'OO.....O......;..O...OQ......O.

Mode 2 Interrupt ProcessSinNgecececccccccscccsccoscsossssscscss

Instruction Execution Sequence............................
Format of Saved Status on System Stack | |
Due to a MOde 3 InterrUPtooooooooooooooooooooooooooooooooo

Page Descriptor Register..................Q..Q......Q.O..O

Address Translation Without Program/Data Separation.......

Address Translation With Program/Data SeparationN.cceccececee
MMU Master ContrOI Register.;..0............Q.......;......
Cache OrganizatioN.e.cecececoccsococeoccscocscccosccoscncoscccsocsces

Refresh Rate Register.....................................

MPU Counter/Tlmer Block Dlagram.....................;.....

Counter Operatlon With Gate Only.ceeeceeccceccccocsccccnsses

Counter Operation With Trigger ONnly.eeeeeeeecceocecooccses

Counter Operation With Gate and Triggerececcceeccceccccccs

Counter/Timer Configuration Register.....oceeeveicccnnceen

Counter/Timer Command/Status RegiSter..ceeeeeeoccocscsocnses
MOdeS OF Operatlon...............'."...‘........Q.........
DMA Master ContrOl Register..‘...................0.......;

Transaction Descriptor Register.ecceeeccecseccecoccoccccosees

o Y ® ® [} [)
[J ® [® [) [

[] ° ® ®
[] ® o o
[J

Source & Destination Address Registers Format...cccceoececcoecaoc

General Format, Asynchronous TransSmiSSiON..cececececocscccoessos

Byte Assembled by Receiver for 5-bit Character with Parity..

UART Configuration Register..cccecececccoccccccscsscccccocse

Transmitter Control/Status RegisStereeeeceeeeescocccceacccsese

Receiver Control/Status Register..cceceeeecocsccooscccoccess
Multiprocessor ConfigurationsS..eeeeeceeccececocecccssscsss
Local Address Registerooooooooooooooooooooooo:ooooooo.oooo

02-3

'
~N

)
\V |

(.
N

e o
TN ON WUV NN W AN W W W W W NN
{
wn

t
o

{
W

B |
o W

ol
N\ W -

o

\C N N \C 0 \C C \C 0 ON NN
|

- D2 0N VPP W N @ a v P WwWiNDe

\V.

°
\Y
|

-—d
\V_)

9-15
c9-17
.9-18
.9-18
«9-19
.9-20
.10-1
.10-2

State Diagram for CPU Bus Request Protocol.....c.eeeeeceeoseesl0=3

Tightly Coupled Processors With Shared Global Memory.e...e.e.

010‘4

Tightly Coupled Processors Without Global Memory.eeooeeeeeesasl10-5
2280 MPU as an I/0 ProCesSSOF.c.ceececesscscssssssocssccnsoscssl0=5

I |
- B

t
(Vo

b

1X

..'l'able of Conténls (Continu.ed)l

10-70
10-8.
12-10

12-20
12-3.

12-5.
12-6.
12-7.
12-8.

- 12"'9.
12"10.
12-11.

12-12.
12-13.
12-14,
- 12-15,

1}"10

13-2.
13-3.
13-4.
13-5.
13-6.
13-7.
13-8.
13-9.

13-10.
13-11.
13-12.
13-13,
13-14.
13-15.
13-16.
13-17.
13-18.

13-19,

EPU COﬁnection ln 2280 MPU System.‘...‘.‘...............O..Q...10-6_

CPU-EPU Instruction Execution SequenCe.c.cccececeeces

280 Bus Configuration (Input OPT tied to GND)

a) Pln Functionsc‘..O.....0.0.0....0.........0.
b) Pln ASSignmentS......O......O.....'Q..O....O..

Memory Read TiminNgeeececeeeccococcsasscscoossscoccsoscscscscacs
Memory wrlte TiminQOO...0........O..O....0.0..C.OO

Memory Read Timing W/0One External Wait State......

Memory Write Timing W/One External Wait State.........

Memory Read Timing W/0One Internal Wait State......
RETI REAd TiMiNgeeeeeeeooeeeoaeesosasssseseconosss
Halt Timing.eeceeceoeccoscsossescscscsoscsosccsocsccscscccccs
Memory Refresh Timing..ceceeeceeocecsoscccocscccccsesos
I/0 Read Timingeeeoeoeeeeooeocoossoacooasennss |
I/0 Write Timingeeeeeeccecocoososooccsosccocsooscsscsoe
Interrupt Acknowledge SequUENCE...ceeeevececccacscss
On-Chip DMA Channel Flyby Memory Read Transaction.
On-Chip DMA Channel
Multiprocessor Mode
Z-BUS Configuration

Flyby Memory Write Transaction...

Timing.'.....................Q.....‘.....12-1‘5
(Input OPT tied to +5V or not connected)

o & &6 o o
o & o o
e & o o
o & o o
e & O o o
e & o o
..OQ’.
o & o o

e 6 06 0 0 o "'7

..12-1
e 12-1
..12-5
..12-6
..12-6
12-7
«12-7
.12-8
.12-9
.12-10
..12-11
e 12-11
..12-12
.e12-13
..12-14 |

a) Pin FunctionS...............0.....000.00..............0013-1
b) Pin ASSignmentS..?O.'....C...Q..Q.0.0.........0..0.00000013-1‘

Memory
Memory
Memory

Memory
Memory

Write Timing With External Wait Cycle......

Burst Memory Read Timing...cococccccncccscccsscccns

Read Timing.‘....C.....'.......................0...‘...01}-6'

write Timing....'.‘...‘...‘.............'..‘.....“..0..‘13-7
Read Timing With External Wait Cycle..cceecoocecscocecsell=7

0000001}‘8

Read Timing With Internal Wait Cycle...cceeeceeccccecesl3-8

00.00.13‘9

Halt Timing...'......‘O....Q.O..........O.,......‘...0.......013-10

Memory Refresh Timingeeceececeeceeceoccccscsaccssncsaos
I/0 Read Timingecececeecccoocoooscososococsssasssosssse
I/0 Write TimingGeeeeoeeeoeeoaeseoaoncosoanes
Interrupt Acknowledge TiminNge.ececececoccocecococccess

Memory to EPU Timing...........................,..

00000013"11

0000000000.013-12

00000013"’12

000.0'000000;13"13

00000013"14

EPU wrlte TO Memory.....“.........0'.'..........00‘00000000000013-15

EPU TO CPU Timing.....‘.’.'.......&............O..
PAUSE riming........‘.......‘O..O..Q....'.....0.0.....

00000013“16

0000000000013"‘16
On-Chip DMA Channel Flyby Memory Read TransactioN.ecceececeseosl13-17
On-Chip DMA Channel Flyby Memory Write TransactionN.cc.ecceseso13-18
Multiprocessor Mode TiminNg.cceeccceccoccscscscccossoscocscosscsccseslld=19

Table | : | ' | . Page
Number " - . Number
3-1. CS Field, Bus Timing & In1tlallzat10n Registereeececececececocscess-1
3-2. LM Field, Bus Timing & Initialization Register...cecceceeccecccs3-1
I/0 Field of Bus Timing and Control Registerecccececccccccccced=2

HM Field of Bus Timing and Control Register...cceccecececcecoseli=2

DC Field of Bus Timing and Control RegiSter.eecececscecccccccoeed=2

\V |
i
N
.

CONdition COdESeeeeeecessececcccosssscossoscsscsosossssscssssccsssncadml
B-Bit Load Group INStrUCLiONS.ceceeeccccccccccosososcsconccccsesd=lh
16-Bit Load and Exchange Group InstructionS..ccccecceccccccoceed=)
Block Transfer and Search GrouUpececceccecccccsccccoccscscscscscsosccsssssdD=D
B-Bit Arithmetic and Logic Groupecceecceccccecsccosccocccoccssnssd=b
16-Bit Arithmetic Operation InstructionS.cccccececoccceccocsce 5=7
Bit Manipulation, Rotate and Shift GroOUP..eccecsoesccscsscnesed=8"
Program Control Group INStructionNS....ceeeeeoeceocscscosscsscscsee55=8
Input/Output Instruction Group InstructionNS..cecececcccccccncadcd=Y
« CPU Control GroUpPecseccccecscsccccccscscecossossscsoscssscsscscsscssceead=10
Extended INStructioNS...cseesscesccsccsccscsscscscsscsasssssssesd=10
. Encoding of 8-Bit Registers in Instruction Opcodes.cceeccceese5-11
Grouping of Maskable Interrupt RequestS.ccceeccceccccecccccccececb-1
INtErrTUPt MOdESceeeeeoeecocosacececocosososesossoossscssscnesesbld

i
N ecd W N = WU & UWIN @ @ am a0 o000 BEWiNNa o

N |
N e O o
°

Trap TypeSoooooooooooooooooooooocooooooooooooooo000000000000006-7

Interrupt Acknowledge Encoding for Z80 Bus PartS.ccceceoceccececeb=7
Interrupt/Trap Vector Table Format....ccecececoceeecccccceeeaesss6-10

-1. Page Descriptor Register AdAressSeS.cceccececccccsccsccoescscscscecel=H
-2, MMU Invalidation Port.ccccceccecceccccccscccccscoscccsccoscsccccsccscel=b
-3. 1/0 Port Addresses for MMU Control RegiSterS.cceeeeececcccecsscel=6
-1. CPU Accesses to On-Chip Memory as CAChE . e eeseenossocoaeensaseaBa2

oo NN NN ONOONONON VYV VY VYUY VY VDDV O DWW

On-Chip DMA Accesses (Both Flowthrough and Flyby) Effect

on ON-Chip Memory 88 CACHhE .ueeeeeeoeesooceossassoscccssssoseseslB=3
8-3. DMA/CPU Accesses to On-Chip Memory as Fixed Memory Location...8-4
9-1. Encoding, IPA Field in C/T7 Configuration Register.ccecccecececeesd=5
9-2. 1/0 Addresses of Counter/Timer RegiSEerS..ceececececesocceeees9=T
Y-3., Configuration and Command/Status Registers

for Linked Counter/Tlmers............................;........9-8
9-4. Encoding of DAD & SAD Fields in DMA Transaction SR

Descriptor Reglster...;.9-13
Encoding of Type Field in Transaction Descriptor Register.....9-14 ;'.
Encoding of BRP Field in Transaction Descriptor Register......9-14
Encoding of ST Field in Transaction Descriptor Register.......9-14

I/0 Addresses of DMA Reglsters................................9-15

CR Field of UART Configuration RegiSter.ccccecceccecccsccccocesd=19 |

BC Field of UART, Control RegiSter..eceeeeceeenescsccccocosnaead=19 /
I/0 Addresses Of UART ReEgiSLerS.eececeececscocecsocscscococscsesessd=20 |
Reset Value of UART and DMA Registers

When Bootstrap Mode Is Selected...cccececceceroocccccoscsoccocscseed=21

C L LC L € ¢ C© ¢
|

- ed - \C O ON 0N
®

N a2 O o

]

X 1

Table' of Cbnlenls (Continued)

10"10

10-’20

T T MMM MMMM MMM MM MM
t
N e d & O ON WV & W N -

° QO o .
. ®

Bus Transactions Involved in Fetch of

Extended Instruction Template.....;.....}...;..........;....
Sequence of Transactions for Data Transfers

Between an EPU and MemOrY.eeeeeceeeooscoosocsoosococcscsosocscsccocsaos
Effect of a Reset on 2280 CPU & MMU Registers.cecececececcccss

Effect of a Reset on Z280 On-Chip Peripheral Registers......
ST Status Llne DeCOde.Q.Q.........0....0.....;.00000000.0000000013-4

Format
Format
Format
Format

1
2

3
4

Instruction EncodingSecccececsccccecscccocscccnsccccos

Instruction EnCOdingSQOQ.........O..O................’

Instruction ENcodingS.ececoseececccccccccsosccccososccscec

InStruction ENCOdINgSeeeceeeecceccaccssocooossonases

Instruction Execution TimeS..cceoeccocccocccccccsscoccoccccaos
Extended Instruction Execution TimeS.ceeecececocccoacccsccsecssb=11
Interrupt, Trap, and Special Condition Execution TimeS......
Instruction Fetch and Decode TimiNge.ececooceosecosccocososoccssebE=13

0010"8

0010"9
0011"2
0.11"}

008-2)

m oo ® D
'
NN NN

ooE"‘12

Data Read TiminNgQeceeeoscceocosccosccesoosccscccssssosscsonscssscscssesb=14
Data Write Timingeeeeececececocscscsscosccoscoscsssoscoscscsssssocscsesosb=14 "
I/0 Read and Write Timinge.cccoeeeoocccesossccsoscscccscscosssssscssseb=15
EPU Read and Write Timing.cceeceeecececcecosccscscsoccscssssssssssb=15
Interrupt Acknowledge TimingQ.eceeooceosccoccoscscsccosossacsoncscsccsesb=15
Miscellaneous Transaction TimMinNgeeeceeccecoccoccoscsoscccosscccsscseosbl=-16
28400 Peripheral Family.ceceoeeececosecoosccsoscscssccssasoscscscscsf—1

28000/28500 Peripheral Family00.'...;....‘..‘...Q...

x11

!
!

;QF-1

Chapter 1 .
2280 Archltectural OverVIew

- 1.1 INTRODUCTION

The Z280™ microprocessor unit (MPU) features an " " of the various aspects of the processor prov1ded
~advanced 16-bit CPU that is object-code compatible in succeeding chapters.

with the Z80® CPU. The 2280 microprocessor unit

includes memory management, peripherals, memory

refresh logic, cache memory, wait state

‘generators, and a clock oscillator on the same

integrated circuit as the CPU. The on-chip

peripheral devices include 4 DMA (Direct Memory

Access) channels, 3 counter/timers, and a UART
(Universal Asynchronous Receiver/Transmitter). A’
block diagram of the Z280 MPU is shown in Figure

1-1. This chapter presents some of the features

of the 72280 MPU family, with detailed descriptions

The Z280 MPU has a multiplexed address/data bus
for communication with external memory and
peripheral devices. Two different bus structures
are supported by the Z280: an 8-bit data bus that
uses Z80 Bus control signals, and a 16-bit data
bus that uses Z-BUS® bus control signals. Zilog's
280 and 78500 families of peripherals are easily
interfaced to the Z80 Bus; Zilog's Z8000® family
of peripherals are easily interfaced to the Z-BUS.

Z80 COMPATIBLE . | . -BTAGE PPELINE

EXECUTION UNIT

@
o
[]
[J
[)
®
o INTERNAL
aeuigAslé- Econmou. :
PUR SIGNALS
REGISTER e ‘
FILE °
. .
[] g
®
[}
[]
s
—- AS
, : - “RD/DS
~ INTERNAL BUS a o . *HALT/B/W
*RFSH/ST,
*IORQ/ST,
“MI/ST,
*MREQ/ST,
XTALI DRAM N |
. FOUR16-BIT 10-81T . INTERRUPT
. DMA CHANNELS REFRESH CONTROL 3, T
XTALO ‘ ADDRESS 4 .
THREE GENERATOR 280 BUS
16-8IT
COUNTER/ (l-zB.l'Tl),sOﬂ oPT
TIMERS 24-BIT SOURCE (16-BIT)
4+ SV ———i 24-BIT DESTINATION { BUS SCALE - CLK
16-BIT COUNTER AND WAIT
WAIT STATE -
GND GENERATOR PAUSE

3 3 4 2
1 | REsET| OF |BUSREG| GREG
CTW cTio ROV DWASTS EOF RO mO B BUBAK K AwAn ADeAD;

¢ Signal definition depends on OPT. -
+ EOP sheres W/INT, .
+ GACK shares W/CT INo.

. + GREQ shares W/CT 10¢.

__-Figuré 11. Block Diagram

1-1

1.2 MPU ARCHITECTURAL FEATURES

The central processing unit of the 7280 MPU is a
binary-compatible extension of the Z80 CPU
architecture. High throughput rates for the 7280
CPU are achieved by a high clock rate, instruction
pipelining, and the use of on-chip cache memory.
The internal CPU clock can be scaled down to

provide for slower speed bus transaction timing.

A programmable refresh mechanism for dynamic RAMs

and a clock oscillator are provided on-chip.
/

1.2.1 System and User Modes

Two modes of CPU operation, system and user, are
provided to facilitate operating system design.
In system mode, all of the instructions can be

executed and all of the CPU registers can be

accessed. = This mode 1is intended for use by
programs performing operating system functions.

In user mode, certain instructions that affect the
state of the machine cannot be executed and the

control registers in the CPU are inaccessible. In
general, user mode is
applications programs.

resources promotes the integrity of the system,
since programs executing in wuser mode cannot

access those aspects of the CPU that deal with -

. time-dependent or system-interface events.,
The register . structure has been extended to
" include separate Stack Pointer registers, one for
& system-mode stack and one for a user-mode
. stack. The system-mode stack is used for saving
- program status on the occurrence of an interrupt
or trap condition, thereby ensuring that the user
stack 1is free of system information. The
“isolation of the system stack from user-mode
~programs further promotes system integrity.

- 1.2.2 Addrpss Sbaces

Addressing spaces in the Z280 CPU include the CPU
register space, the CPU control register space,
the memory address space, and the I/0 address
space. The CPU register file is identical to the
Z80 register set, with the exception of the
separate system- and user-mode Stack Pointers.
-The A register acts as an 8-bit accumulator; the
HL register is the 16-bit accumulator. These are

-operation of the 2280 MPU.

intended for wuse by
This separation of CPU

. element.

suppleménted by four other 8-bit registers (8, C,
D, E) and two other 16-bit registers (IX, 1Y);
the 8-bit registers can be paired for 16-bit

- operation, and each 16-bit register can be treated

as two B8-bit registers. The Flag register (F)

“contains information about the result of the last

operation. The A, F, B, C, D, E, H, and L

.registers are replicated in an auxiliary bank of

registers. These auxiliary registers can be
exchanged with the primary register bank for fast

context switching.

Several CPU control registers determine the
For example, the
contents of control registers determine the CPU
operating mode, which interrupts are enabled, and
the bus transaction timing. The control registers

-are accessible in system-mode operation only.

The Z280 CPU's logical memory address space is the
same as that of the Z80 CPU: 16-bit addresses are
used to reference up to 64K bytes of memory.
However, the on-chip Memory Management Unit (MMU)
extends the 16-bit logical memory address to a
24-bit physical memory address. Two separate
logical address spaces, one for system mode and
one for user mode, are supported by the CPU and
MMU. Optionally, the MMU can be programmed to
distinguish between instruction fetches and data
accesses; thus, the 7280 CPU can have up to (pur
memory address spaces: system-mode program,
gsystem-mode data, user-mode program, and user-mode
data. The logical address space is divided into
pages to facilitate controlled sharing of program
or data among separate processes. - .

The 2280 CPU architecture also distinguishes °
between the memory and I/0 address spaces and,

therefore, requires specific 1/0 instructions. ."

I/0 addresses in the 2280 CPU are 24 bits long,
with the upper 8 bits provided by an 1/0 page
register in the CPU. T o

' 1.2.3 Data Types o

| Many data tybés are supported by the 27280 CPU
. architecture.

The basic data type is the 8-bit
byte, which is also the basic addressable memory
The architecture also supports opera-
tions on bits, BCD digits, 2-byte words, and byte

strings. | | - ‘ | |

. 8-bit

1

m

1.2.4 Addressing Hbdes

" The operand addressing mode is the method by which

a data operand's location is specified.
CPU supports nine addressing modes, including the
five modes available on the
addre331ng modes of the 72280 CPU are:

Register

Immediate .

Indirect Register

Direct Address . |
Indexed (with a 16-bit dlsplacement)
Short Index (with an B-bit dlsplacement)
 Program Counter (PC) Relative '
Stack Pointer (SP) Relative
Base Index

-,

All addressing modes are available on the 8-bit
load, arithmetic, and logical instructions; the
shift, rotate, and bit manipulation
instructions are limited to the Register, Indirect

Register, and Short Index addressing modes. The

16-bit loads on the addressing registers support

all addressing modes except Short Index, while
other 16-bit operations are limited to the
Register, Immediate, Indirect Register, Index,

fli Direct Address, and PC Relative addressing modes.

. -

' '1.2.5 Instruction Set N
.. The 2280 CPU instruction set is an expansion of
the Z80 instruction set; the enhancements include
- support for additional addressing modes for the
780 instructions as well as the addition of new
" instructions. The 2280 CPU instruction set
| ”pnovides a full complement of 8- and 16-bit
" .arithmetic operations, including signed and
* unsigned multiplication and division. Additional

-8-bit computational instructions support logical

- and decimal operations. Bit manipulation, rotate,
and shift instructions round out the data
manipulation capabilities of the Z280 CPU. The
Jump, Call, and Return instructions have both
conditional and unconditional versions; Relative

addressing is provided for the Jump and Call

ingstructions to support position-independent
programs. - Block move, search, and I/0
instructions provide powerful data movement

capabilities.
have been included to facilitate multitasking,

multiple processor configurations, and typical
high-level language and operating system
functions. | '

280 CPU The =

In addition, special instructions

" 1.2.6 Exception Conditions =

The 72280

The 2280 MPU s}uppért.s three types of exceptions |

(conditions that alter the normal flow of program

execution): ~interrupts, traps, and resets.

asynchronous events typically
triggered by peripherals requiring attention. The
Z280 MPU interrupt structure has been signi-
ficantly enhanced by increasing the number of

Interrupts are

.' interrupt request lines and by adding an efficient
- means for handling nested interrupts.

There are
four modes for handling interrupts: -

@. 8080 compatible, in which the interrupting
device provides the flrst instruction of the
1nterrupt routine..

- 6'-Dedicated interrupts, in which the CPU jumps to

a dedicated address when an interrupt occurs. o

e Vectored interrupt | mode, in which thev
. interrupting peripheral provides a vector into
" a table of jump addresses. ' 3

e Enhanced vectored interrupt mode, wherein the
- CPU handles traps and multiple interrupt
sources, saving control information as well as
the Program Counter when an interrupt occurs.
The first three modes are compatible with the Z80
CPU interrupt modes; the fourth mode provides more
flexibility, with support for nested interrupts
and a sophisticated vectoring scheme. -

Traps are synchronous events that trigger a
special CPU response when certain conditions occur

during instruction execution. The 2280 CPU
supports a sophisticated complement of traps
including Division Exception, System Call,
Privileged Instruction, Extended Instruction,
Single-Step, Breakpoint-on-Halt, Memory Access
Violation, and System Stack Overflow Warning
traps. |

Hardware resets occur when the RESET line is
activated and override all other conditions. A
reset causes certain CPU control registers to be
initialized. | - |

" 1.2.7 Memory Management .'

Memory management consists primarily of dynamic
relocation, protection, and sharing of memory.

1-3

Proper memory management can provide a logical
structure to the memory space that is independent
of the actual physical location of data, protect
the user from inadvertent mistakes (such as trying
to execute data), prevent unauthorized accesses to

memory, and protect the operating system from
disruption by users. - .. .

The 16-bit

grammer, used by instructions, and output by the
CPU are called logical addresses. The on-chip
Memory Management Unit (MMU) transforms the
logical addresses into the corresponding 24-bit
physical addresses required for accessing memory.
This address transformation process is called
relocation, and makes user software independent of
physical memory. Thus, the user is freed from

specifying where information is actually located
in physical memory.

Status information generated by the CPU allows the.

MMU to monitor the intended use of each memory
access. Illegal types of accesses, such as writes
to read-only memory, can be suppressed; thus,
- areas of memory can be protected from unintended
or unwanted modes of use. Also, the MMU records
which memory areas have been modified and can
inhibit copies of data from being retained in the
on-chip cache.

When a memory access violation is detected by the.

MMU, a trap condition is generated in the CPU and

execution of the current instruction is auto-

matically aborted. This mechanism facilitates the

easy implementation of virtual memory systems
based on the 7280 MPU. B

1.2.8 Cache Memory .

Cache memories are small high-speed buffers
situated between the processor and main memory.
For each memory access, control logic checks to
see if the data at that memory location is
currently stored in the cache.
is made to the high-speed cache;
access is made to main memory, and the cache
itself might be updated. Thus, use of a cache
leads to increased performance with fewer memory
transactions on the system bus.

if not, the

The Z280 MPU includes on-chip memory that can be

used as a cache for programs, data, or both,
Cache operations, including updating, are

per formed automatically and are completely trans-

parent to the user, Optionally, this on-chip
memory can be dedicated to a set of memory
locations that are specified wunder

control, instead of being used as a cache,

program

addresses manipulated by the pro-'

included on-chip in the 27280 MPUs:

If so, the access -

. 1.2.9 Refresh

The 2280 MPU has an internal mechanism for
refreshing dynamic memory. This mechanism can be
enabled or disabled under program control. If
enabled, memory refresh operations are performed
periodically at a rate determined by the contents
of a refresh rate register. A 10-bit refresh
address is generated for each refresh operation.

. 1.2.10 On-Chip Peripherals

Several devices are

four DMA
channels, three 16-bit counter/timers, and a

UART. Optionally, one of the DMA channels can be
used with the UART as a bootstrap loader for the
2280 MPU's memory after a reset.

programmable peripﬁeral

1.2.11 Multiprocessor Mode

| A“special mode of obérétion allows the 2280 MPU to

operate in environments that have a global bus,
wherein the 7280 MPU is not the bus master of the
global bus. A set of memory addresses (determined
under program control) is dedicated to a local
bus, which is controlled by the 2280 MPU, and
another set of addresses is used for the global
bus. The 7280 MPU is required to make a bus
request and receive an acknowledgement before
making a memory access to an address on the global
bus. This mode of operation facilitates use of
the 2280 MPU in multiple-processor configura-
tions. For example, a Z280 MPU could be used as
an I/0 processor in a Z80000-, Z8000-, or
2280-based system. . - | |

~ 1.2.12 Extended Instruction Facility

The 7280 MPU architecture has a mechanism for
extending the basic instruction set through the
use of external devices called Extended Processing
Units (EPUs). Special opcodes have been set aside
to implement this feature. When the 2280 MPU
encounters an instruction with one of these
opcodes, it performs any indicated address calcu-
lations and data transfers; otherwise, it treats
the "extended instruction" as if it were executed

by the EPU.

'f an EPU is not present, the Z280 MPU can be
programmed to trap when an extended instruction is

encountered so that system software can emulate
the EPU's activity. |

1.3 BENEFITS OF THE ARCHITECTURE

The features of the 7280 MPU architecture provide

several significant benefits, including increased
integration of

program throughput, increased
system fuhctions, support for operating systems,
and improvements in compiler efficiency and code
density.

1.3.1 High Throughput

Very high throughput rates can be achieved with
- the 7280 MPU, due to the cache memory, instruction
pipelining, and high clock rates achievable with
this processor. The CPU clock rate can be scaled

down to provide the bus clock rate, allowing the

designer to use slower, less-expensive memory and
I/0 devices. Use of the on-chip cache memory
further increases throughput by minimizing the
number of accesses to the slower, off-chip memory
devices. The high code density achievable with
the 7280 CPU's expanded instruction set also
contributes to program throughput, since fewer

instructions are needed to accomplish a given
task. | o |

1.3.2 Integration of System Functions

" Besides a powerful CPU, the Z280 MPU includes
many on-chip devices that previously had to be
implemented in logic external to the micro-
processor chip. These devices include a clock
oscillator, memory refresh logic, wait state
generators, the MMU, cache memory, DMA channels,
counter/timers, and a UART. Integration of all
these functions onto a single chip results in a
reduced parts count in a system design, accom-
panied by a resulting reduction in design and
debug time, power requirements, and printed
circuit board space. This increased level of
integration also contributes to system throughput,
since the on-chip devices can be accessed quickly
without the need of an external bus transaction.

'1.3.3 Operating System Support

Several of the 7280 MPU's architectural features
facilitate the implementation of multitasking
operating systems for Z2280-based systems.

The inclusion of user and system operating modes
improves operating system organization. User-mode
programs are automatically inhibited from per-
forming operating-system type functions. System-
. mode memory can be separated from user-mode memory
and separate stacks can be maintained for system-
mode and user-mode operations. The System Call

ment by providing both a

- memory utilization.

instruction and the trap mechanism provide a:
controlled means of accessing operating system
functions during user-mode execution. -

The interrupt- and trap-handling mechanisms are
well suited for operating system implementations.
Several levels of interrupts are provided,
allowing for separate control of various peripher-':
al devices (both on and off the chip). A new
interrupt mode is provided, wherein status infor-
mation about the currently executing task is saved

- on the stack and new program status information

for the service routine is automatically loaded
from a special memory area. Traps result in the
same type of program status saving. . In both

cases, status is always saved on the system stack,

leaving the user stack undisturbed.

Allocation of resources within the operating
system can be accomplished using a special Test
and Set instruction. Other instructions, such as
the Purge Cache instruction, are provided to aid

in task switching and other operating system
chores.

The on-chip MMU supports a multitasking environ-
means of quickly
allocating physical memory to tasks as they are
executed on the system and protection mechanisms
to enforce proper memory usage. . |

1.3.4 Code Density

Code density affects both processor speed and
Code compaction saves memory
gspace and improves processor speed by reducing the
number of instructions that must be fetched and
decoded. The largest reduction in program size

 results from the powerful instruction set, where

instructions such as Multiply and Divide help
substantially reduce the number of instructions
required to complete a task. -

The efficiency of the instruction set is enhanced
by the addition of new addressing modes. For
example, all nine addressing modes are available
for all the B8-bit load, arithmetic, and logical
instructions. | S . |

1.3.5 Compiler Efficiency

For microbrocessor users, the transition from
assembly lanquage to high-level lanquages allows

- greater freedom from architectural dependency and

improves ease of programming. For the 7280 MPUs,
high-level language support is provided through ‘
the inclusion of features designed to minimize
typical compilation and code-generation problems.

S

——]

1-5

Among these features is the variety and the power
of the 7280 instruction set, allowing the 72280 CPU
to easily handle a large amount and variety of
data types. The 2280 CPU's ability to manipulate
many different data types aids 1in compiler
efficiency; since data structures are high-level
constructs frequently used in
processing performance is enhanced by providing
efficient mechanisms for manipulating them.

Examples of commonly used data structures include
arrays, strings, and stacks. Arrays are supported
in the 2280 CPU by the Indirect Register, Index,
and Base Index addressing modes. Strings are
supported by those same addressing modes and the
Block Move and Compare 1instructions; since
compilers and assemblers often must manipulate
character strings, the Block Move and Block
Compare instructions can result in dramatic speed
improvements over software simulations of those
tasks. Numeric strings of BCD data can be
manipulated using the Decimal Adjust and Rotate
Digit instructions. Stacks are supported by the
Push and Pop instructions and the Stack Pointer
Relative, Index, and Base Index addressing modes;
the Stack Pointer Relative addressing mode is

programming,

'especially useful for accessing parameters and

local variables stored on the stack.

1.4 SUMMARY -

The 72280 MPU is a high-performance 16-bit micro-
processor, available with 8- and 16-bit external
bus interfaces. Code-compatible with the 280 CPU,

.the 72280 MPU architecture has been expanded to

include features such as multiple memory address
spaces, efficient handling of nested interru.pts,
system and user operating modes, and support for

multiprocessor configurations. Additional
functions such as memory management, clock
generation, wait state generation, and cache

memory are included on-chip, as well as a number
of peripheral devices. The benefits of this
architecture--including high throughput rates, a
high level of system integration, operating system
support, code density, and compiler efficiency--
greatly enhance the power and versatility of the
2280 MPU. Thus, the 72280 MPU provides both a
growth path for existing Z80-based designs and a
high-performance - processor for
applications. |

future

| Chaptér 2.

Address Spaces

2.1 INTRODUCTION

The 7280 MPU supports four address spaces corre-
- sponding to the different types of locations that
can be addressed, the method by which the logical
addresses are formed, and the translation mecha-
nisms wused to map the logical address into
physical locations.
are:

e CPU redister space. This consists of the
~addresses of all registers in the CPU register
file. |

® CPU control register space. This consists of
- the addresses of all registers in the CPU
control register file.

® Memory address gpace. This consists of the
addresses of all locations in the main memory.

4

e I/0 address space. This consists

- addresses of all 1I/0 ports through which
peripheral devices are accessed, including
on-chip peripherals and MMU registers.

PRIMARY FILE

A ACCUMULATOR F FLAG REGISTER

-

These four address. spaces

of thé

2.2 CPU REGISTER SPACE

The 2280 CPU register file is illustrated in

Figure 2-1. The primary register file, consisting
of the A, F, B, C, D, E, H, and L registers, is
augmented by an auxiliary file containing
duplicates of those registers. Only one set
(either the primary or auxiliary file) can be used
at any one time. Special exchange instructions
are provided for switching between the primary and

'

auxiliary registers. - = g |

The CPU register file is divided into five groups
of registers (an apostrophe indicates a register
in the auxiliary file):

@ Flag and accumulator registers (F, A, F', A')

@ Byte/word registers (B, C, D, E, H, L, B', C',

D', E', H', L")
® Index registers (IX, IY)
- Stack Pointers (SSP, USP)
Program Counter, Interrupt
Refresh register (PC, I, R)

g

L

register,‘ and

~ AUXILIARY FILE

A’ ACCUMULATOR . F' FLAG REGISTER

B GENERAL PURPOSE C GENERAL PURPOSE

B’ GENERAL PURPOSE - C’' GENERAL PURPOSE

D GENERAL PURPOSE E GENERAL PURPOSE

D' GENERAL PURPOSE E' GENERAL PURPOSE

"H GENERAL PURPOSE

'L GENERAL PURPOSE

f=- 8 BITS >

IX INDEX REGISTER

- H' GENERAL PURPOSE

4

IY INDEX REGISTER
|

PC PROGRAM COUNTER

SP STACK POINTER

USER (USP) !

f= 16 BITS

Figure 2-1.

L’ GENERAL PURPOSE

NOTE: A is the 8-bit accumulator. .
HL is the 16-bit accumuilator.

>

Register File Organization

2-1

Register addresses are either specified explicitly
in the instruction or are implied by the semantics
of the instruction, '

The flag registers (F, F') contain eight status
flags.
of program branching, two are used to support
decimal arithmetic, and two are reserved (see
section 5-2). The accumulator (A) is the implied
destination (i.e., where the result is stored) for
the 8-bit arithmetic and logical instructions.
Two sets of flag and accumulator registers exist
in the 7280 CPU, with only one set accessible as
the flag register and the accumulator at any one
time. An exchange instruction allows switching to
the alternate flag register and accumulator.

The byte/word registers can be accessed either as

8-bit byte registers or 16-bit word registers, -

Bits within these registers can also be accessed
individually. For 16-hit accesses, the registers
are paired B with C, D with E, and H with L. Two

sets of byte/word registers exist in the 7280 CPU,

although only one set 1is used as the current
byte/word registers; the other set is accessible
as the alternate group of byte/word registers via
an exchange instruction.

The index registers IX and IY can be accessed as
16-bit registers or their upper and lower bytes
(IXH, IXL, IYH, and IYL) can be individually
accessed.

The 2280 CPU has two hardware Stack Pointers, one
dedicated to system mode operation and one to user
mode operation. The System Stack Pointer (SSP) is
used for saving information when an interrupt or
trap occurs and for supporting subroutine calls
and returns in system mode, The User Stack
Pointer (USP) is used for supporting subroutine
calls and returns in user mode.

The Program Counter is used to sequence through
instructions in the currently executing program
and for generating relative addresses. The Inter-
rupt register is used in interrupt mode 2 to
generate a 16-bit logical address from an 8-bit
vector returned by a peripheral during an inter-
rupt acknowledge. The Refresh register is used by
the 280 CPU to indicate the current refresh
address, but does not perform this function in the

2280 CPU; instead, it is another 8-hit register
available for the programmer.

Four can be individually used for control-

" respectively,

The explicit or implicit register specified by an
instruction is mapped into the CPU register file
based on the state of three control bits. One of
the three control bits is used to map the flag and
accunulator registers, selecting either F, A or
F', A' whenever the instruction specifies the flag

register or the accumulator. Another control bit
is used to map the byte/word registers, selecting
the B, C, D, E, H, L registers or the 8', C', D',
E', H', L' registers. These two control bits are
changed by the Exchange Flag and Accumulator and
the Exchange Byte/Word Registers instructions,
At any time the program can sense
the state of these control bits by special jump
instructions. The third control bit, the
User/System control bit in the Master Status
register, specifies whether the System Stack
Pointer register or the User Stack Pointer
register is selected whenever an instruction
specifies the Stack Pointer register. In
addition, the User Stack Pointer register also has
an address in the CPU control register space via a
gspecial Load Control instruction. |

2.3 CPU CONTROL REGISTER SPACE

The Z280 CPU status and control registers govern
the operation of the CPU. They are accessible
only by the privileged Load Control (LDCTL)
instruction. ° |

Control register addresses are specified by the
contents of the C register. No translation is
performed in mapping this 8-bit logical address
into the control register file location.

The Z280 CPU control registers are the Bus Timing
and Initialization register, the Bus Timing and
Control register, the Master Status register, the
Interrupt/Trap Vector Table Pointer, the 1/0 Page
register, the System Stack Limit register, the
Trap Control register, the Interrupt Status

- register, the Cache Control register, and the

Local Address register (Figure 2-2). The CPU

control registers are described in detail 1in
Chapter 3.

CONTROL
REGISTERS

SYSTEM STATUS
REGISTERS

Figure 2-2. CPU Control Registers

2.4 MEMORY ADDRESS SPACES

Two memory address spaces, one for system and one
for user Tode operation, are supported by the Z280
MPU. They are selected by the User/System mode
control bit in the Master Status register, which
governs the selection of page descriptor registers
in the MMU during address translation.

Each address space can be viewed as a string of
64K bytes numbered consecutively in ascending
order. The 8-bit byte is the basic addressable
element in the 72280 MPU memory address spaces.
However, there are other addressable data ele-
ments: bits, 2-byte words, byte strings, and
multiple-byte EPU operands. o

The size of the data element being addressed
depends on the instruction being executed. A bit

- can be addressed by specifying a byte and a bit -

within that byte. Bits are numbered from right to
left, with the least significant bit being bit O,
as illustrated in Figure 2-3. |

Figure 2.3. Numbering of Bits within a Byte

.
.
.
.
.
. .
.
-
.
1
["

- BUS TIMING AND CONTROL

BUS TIMING AND INITIALIZATION

LOCAL ADDRESS

CACHE CONTROL

MASTER STATUS

INTERRUPT STATUS

INTERRUPT/TRAP VECTOR TABLE POINTER

/0 PAGE

TRAP CONTROL

SYSTEM STACK LIMIT

The address of a multiple-byte entity is the same
as the address of the byte with the lowest memory
address within the entity. Multiple-byte entities
can be stored beginning with either even or odd
memory addresses. A word (2-byte entity) is
aligned if its address is even; otherwise it 1is
unaligned. Multiple bus transactions, which may
be required to access multiple-byte entities, can
be minimized if alignment is maintained.

The formats of multiple byte data types in memory
are given in Figure 2-4, |

Note that when a word is stored in memory, the
least significant byte precedes the most

'significant byte of the word, as in the Z80 CPU

architecture.

‘The 16-bit 1logical addresses generated by a

program can be translated into 24-bit physical
addresses by the on-chip MMU. When the
translation mechanism 1is disabled, the 24-bit
physical address consists of the logical address
for bits Ag-Aqg5 and zeros for Aqg-A23. |

60-bit floating-point (EPU instruction only) at address n:

sign,E10-4 address n
E3-0, F51-48 address n +1
FA47-40 address n+2
F39-32 address n+3
F31-24 address n+4
F23-16 address n+5
F15-8 address n+6
F7-0 ' addressn+7
<-1byte --> '

80-bit floating-point (EPU instructions only) at address n:

sign,E14-8 address n

E7-0 address n+1
F63-56 | i address n+2
F55-48 address n+3
F47-40 address n+4
F39-32 address n+5
F31-24 address n+6
F23-16 H address n+7
F15-8 | addressn+8
F7-0 | address n+9

 BCD digit strings (EPU instruction only) at address n:
(up to 10 bytes in length; the illustration is for the
maximum length string) | |

sign,D18 addressn
D17,D16 " address n+1
D15,D014 address n+2
D13,D12 ' address n+3
D11,D10 address n+4
D9,08 ~ address n+5
D7,D06 address n+6
D5,D4 address n+7
D3,02 addressn+8
D1,D0 |

address n+9

16-bit word at address n:

address n
address n+1

least significant byte
most significant byte

32-bit integer (EPU instruction only) at address n:

B31-24 (most significant byte) address n
B23-16 address n+1
B15-8 % address n+2
B7-0 (least significant byte) address n+3
< - 1 byte -------------- >

64-bit integer (EPU instruction only) at address n:

B63-56 (most significant byte) | addressn
B55-48 - | address n+1
B47-40 address n+2
B39-32 address n+3
B31-24 . . address n+4
B23-16 address n+5
B15-8 address n+6
B7-0 (least significant byte) “address n+7
A 1 byte -------------- >

32-bit floating-point (EPU instruction only) at address n:

sign,E7-1 | addressn

EOQ,F22-16 address n+1 3

F15-8 addressn+2 -
A F7-0 address n+3 - ;

<--1byte --> ; | -

Figure 24, Formats of Multiple-Byte Data Elements in Memory |

2.5 1/0 ADDRESS SPACE

1/0 addresses are qenerated only by 1/0
instructions. The B8-bit 1logical port address
specified in the instruction appears on ADg-ADy;
this is concatenated with the contents of the A

register on lines Ag-Aj5 for Direct addressing.

mode, or by the contents of the B register for
Indirect Register addressing mode or block 1/0
instructions. The contents of the 1/0 Page
register are appended to this address on lines

A1g-A23- Thus, the 24-bit 1/0 port address

2-4

external bus.

consists of the B8-bit address specified in the

instruction, the contents of the A or B register,

and the contents of the 1/0 Page register.

An 1/0 read or write is always one transaction,
regardless of the bus size and the type of 1/0

instruction. On-chip peripherals with word
registers are always accessed with word
instructions,

regardless of the size of the -

Chapter 3.

CPU Control Regiéters‘ |

3.1 INTRODUCTION

Several CPU control and status registers ﬂspe'cify'

the operating mode of the Z280 MPU. There are two
types of CPU control registers: system
~configuration registers and system status regis-
ters. The system configuration registers contain

information about the physical configuration of |

the Z2280-based system, such as bus timing infor-
~mation. Typically, the system configuration
registers are loaded once during system initial-
ization and are not altered during subsequent

operations. The system status registers contain
information that may change during system
operation, such as the current 1/0 page. Access

to the CPU control registers is restricted to

system mode operation only, using the privileged
Load Control (LDCTL) instruction. Resets ini-
tialize the control registers so that a Z80 object
program will execute successfully on the Z280
MPU. (280 programs do not affect these registers,
since the Load Control instruction is not part of
the 780 CPU's instruction set.) Unused bits in

these registers should always be loaded with
zeros. |

3.2 SYSTEM CONFIGURATION REGISTERS

There are four 8-bit system configuration regis-
ters: the Bus Timing and Initialization register,
the Bus Timing and Control register, the Local
Address register, and the Cache Control register.

3.2.1 Bus Timing and Initialization Register

The Bus Timing and Initialization register
controls the scaling of the processor clock for
bus timing, the duration of bus transactions to
the lower half of physical memory, and the
enabling of the multiprocessor and bootstrap

modes. Figure 3-1 illustrates the bit fields in
this register. |

7 0

[esfue]of | cs

Figure 31. Bus Timing and Initialization Register

v

Clock Scaling (CS) Field.
governs the scaling of the CPU clock for
generation of bus timing cycles. The state of the
CS field determines the bus clock frequency for
all bus transactions, as per Table 3-1. This
field is initialized during a reset operation, as

described below, and cannot be modified
software.

This 2-bit fielg.

via

!

/

Table 3-1. CS Fleld of Bus Timing and Initialization Register

CS Fileld Bus Clock Frequency
00 . Busclock frequency equals 2 CPU clock frequency
(one bus clock cycle for every two CPU clock cycles)
01 Busclock frequency equals CPU clock frequency
~ (one bus clock cycle for every one CPU clock cycle)
10 Bus clock frequency equals /4 CPU clock frequency
| - (one bus clock cycle for every four CPU clock .
- cycles) - ‘ S
M. Reserved -

Low Memory Wait Insertion (LM) Field. This 2-bit

field sgpecifies the number of automatic wait

"gtates to insert in memory transactions to the

lower 8 megabytes of physical memory (that is, all
memory locations where bit 23 of the physical
address is a 0), as per Table 3-2. Additional
wait states can still be added to any given memory
transaction via control of the WAIT input.

Table 3-2. LM Field of Bus Timing and Initialization Register

Number of Walit States for
LM Field Lower 8M Bytes of Memory
00 - Q
10 . 2
11 . : s) 3 .

\ .

Multiprocessor Configuration Enable (MP) Bit.
This 1-bit field enables the multiprocessor mode
of operation, wherein the Z280 MPU is connected to
both a local and a global bus. Transactions to

321

addresses on the global bus require a special bus
request and acknowledgement before the bus trans-
action can occur. (See Chapter 10 for details
 concerning this mode of operation.) Setting this
bit to 1 enables the multiprocessor mode, and
- clearing this bit to 0 disables this mode.

Bootstrap Mode Enable (BS) Bit. This 1-bit field
enables the bootstrap mode of operation. If the
bootstrap mode is selected during a reset oper-
ation, memory is automatically initialized via the
UART after the reset; the UART receiver and DMA
channel 0 are used to transfer 256 bytes of data
into the first 256 memory locations; execution
then begins from memory location 0. (See Chapter
9 for further details.)
enables the bootstrap mode and clearing this bit
to 0 disables this mode. The BS bit can be set to
.1 only during a reset operation, as described
below. Writing to this bit via a software command
has no effect. This bit is always a 1 when this
' register is read. | -

Bits 4 and 7 of the Bus Timing and Initialization
register are reserved for special use by Zilog and
should always be loaded with a zero when writing
to this register. When this register is read,
bits 4 and 7 may return a 1.

The Bus Timing and Initialization register can be |

initialized with either of two methods during a
reset operation. If the MPU's WAIT input is not
asserted during reset, this register is auto-
matically initialized to all zeros, thereby
specifying a bus clock frequency of one-half the
internal CPU clock, no automatic wait states
during transactions to the lower 8M bytes of
memory, and disabling of the multiprocessor and
bootstrap modes. If the WAIT input is asserted
during reset, the Bus Timing and Initialization
register is set to the contents of the ADg-AD7 bus
lines, as read during the reset operation (see
Chapter 12); this form of initialization is the
only way to specify the bootstrap mode. Once the
CS field has been loaded during reset, it cannot
be modified via software; however, the LM and MP
fields can be written using the LDCTL instruction.

3.2.2 Bus Timing and Control Register

The 8-bit Bus Timing and Control register deter-
mines the timing of bus transactions to the upper
8M bytes of memory and to all 1/0 devices, and the
timing of interrupt acknowledge transactions.
Figure 3-2 indicates the format of this register.

Figure 3-2. Bus Timing and Control Register

Setting this bit to 1

I/0 Wait Insertion (1/0) Field. This 2-bit field

- gpecifies the number of automatic wait states (in

addition to the one wait state always present
during I/0 transactions) to be inserted during
each I/0 read or write transaction, as per Table
3-3. The specified number of wait states is also

‘added to the vector read portion of an interrupt

acknowledge cycle.

Table 3-3. 1/0 Field of Bus Timing and Control Register

Number of Wait States
1/0 Field forl/O
00 - 0
R+ I I
10 - T 2
11 | 3

High Memory Wait Insertion (HM) Field. This 2-bit
field specifies the number of automatic wait

" states to be inserted during memory transactions

to the upper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1), as per Table 3-4.

Table 3-4. HM Fileld of Bus Timing and Control Register

L Number of Wait States for

HM Fleld Upper 8M Bytes of Memory
o0 . 0
10 . | 2
1 - | 3

Daisy Chain Timing (DC). This 2-bit field
determines the number of automatic wait states to
be inserted during interrupt acknowledge
transactions while the interrupt acknowledge daisy
chain is settling, as per Table 3-5. Normally,
2.5 bus clock cycles elapse between the assertion
of Address Strobe and the assertion of Data Strobe
during an interrupt acknowledge (for the Z-BUS)
or between the assertion of MT and the assertion

of TORQ (for the 280 Bus). The value of the DC
field determines if any additional clocks are to

be added between the Address Strobe and Data
Strobe (or MT and TORQ) assertions.

Table 3-5. DC Field of Bus Timing and Control Register

Number of Wait States for
DC Field Interrupt Acknowledge
00 S - .0
01 R
10 L2
1 3

3-2

The contents of the Bus
register govern the number
states to be inserted during various bus trans-

Timing and Control

actions. Additional wait states can be added to
any bus transaction via control of the WAT]
input.

The Bus Timing and Control register is set to 30H by a
reset. Bits & and 5 should always be written with 0.

When this register is read, bits 4 and 5 may return a
1.

3.2.3 Local Address Register S

The 8-bit Local Address register is used while in
multiprocessor mode to determine which memory
addresses are accessed via the local bus and which
memory addresses are accessed via the global bus.
If the multiprocessor mode is disabled (that is,
if there is a 0 in bit 5 of the Bus Timing and
Initialization register), the contents of the

Local Address register have no effect on MPU
operation.

If multiprocessor mode is enabled, the MPU auto-
matically uses the Local Address register during
each memory access to determine if the global bus
is required. The Local Address register consists
of a 4-bit match field and a 4-bit base field that
are compared to the upper four bits of the
physical memory address during memory trans-

actions. The 4-bit match field specifies which
bits of the physical memory address are of
interest; for those bit positions specified in

the match field, if all the corresponding address
bits match the Local Address register's base field
bits, then the bus transaction can proceed on the
local bus. If there is a mismatch in at least one
of the specified bit positions, then the global
bus 1is requested, and the transaction cannot
proceed until the global bus acknowledge signal is

asserted. (See Chapter 10 for further discussion
of the Multiprocessor mode.)

The format of the Local Address register is
illustrated in Figure 3-3.

7 ' 0

Figure 3-3. Local Address Register

Base bit (B): For each ME, that is set to 1, the
corresponding value of B, must match the value of
address bit A, in order for the local bus to be

used; otherwise, the transaction requires the use
of the global bus.

of automatic wait -

Match Enable bit (ME;): If ME, is set to 1, then
the corresponding physical address bit A, is
compared to base bit B, to determine if the
address requires the use of the global bus. 1If
ML, is a zero, then any values for A, and B,
produce a match, signifying a local bus access.
If every ME, is cleared to 0, then all memory
transactions are performed on the local bus.

The Local Address register is cleared to all zeros
by a reset. '

3.2.4 Cache Control Register

The 8-bit Cache Control register controls the
operation of the on-chip memory. The contents of
the Cache Control register determine if the
on-chip memory is to be used as a cache or as
fixed memory locations; if used as a cache, the
cache can be enabled for instruction fetches only,
for data fetches only, or for both instruction and
data fetches. This register is also used to
determine if burst-mode memory transactions are
supported. (See Chapter B8 for further discussion
of the on-chip memory and Chapter 13 for a
description of the burst mode memory transaction.)

The Cache Control register contaiﬁs five control

bits, as described below. The format for this
register is shown in Figure 3-4,

7 0

| 1] o fmapme 0 oo

Figure 3-4. Cache Control Register

’
.
Y

Memory/Cache (M/C) Bit. While this bit is set to
1, the on-chip memory is accessed as physical
memory with fixed memory addresses; the user can
programmably select the ranges of memory addresses
for which the on-chip memory will respond. While
this bit is cleared to 0, the on-chip memory is
accessed associatively as a cache.

Cache Instruction Disable (I) Bit. While this bit
and the M/C bit are cleared to 0, the on-chip
memory 1s used as a cache during instruction
fetches. While this bit is set to 1, instruction
fetches do not use the cache. If the M/C bit is a
1, the state of this bit is ignored.

Cache Data Disable (D) Bit. While this bit and
the M/C bit are cleared to 0, the on-chip memory
is used as a cache during data fetches. While
this bit is set to 1, data fetches do not use the
cache. (The cache can be enabled for both

3-3

instruction and data fetches by clearing both the
1 and D bits.) If the M/C bit is a 1, the state
of this bit is ignored. -

Low Memory Burst Capability (LMB) Bit. This 1-bit

field specifies whether burst-mode memory
transactions will occur during memory transactions
to the lower B8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 0). Setting this bit to 1 enables
burst-mode transactions; clearing this bit to O
disables burst mode transactions.

High Memory Burst Capability (HMB) Bit. This
1-bit field specifies whether burst-mode memory
transactions will occur during memory transactions
to the wupper B8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1). Setting this bit to 1 enables

~ burst-mode transactions; clearing this bit to 0 -

disables bu:st-mode transactions.

The Cache Control register is set to a 20,
{hexadecimal) by a reset, enabling the on-chip
memory for use as a cache for instruction fetches

only and disabling burst mode transactions. Bits

0, 1, and 2 of this register are not used.

3.3 SYSTEM STATUS REGISTERS

There are six system status reqisters in the 7280
CPU: the Master Status register, Interrupt Status
register, Interrupt/Trap Vector Table Pointer, 1/0

Page register, Trap Control register, and System
Stack Limit register.

b

3.3.1 Master Status Register

The 16-bit Master Status register (MSR) contains
status information about the currently executing
program. JIypically, the MSR changes when a new
programming task is dispatched; - it changes
automatically when an interrupt or trap occurs.
For all traps and for interrupts processed using
interrupt mode 3, the old value of the MSR is
saved on the system stack and a new MSR is loaded
along with the Program Counter to define the
service routine. (See Chapter 6 for a detailed
discussion of interrupt and trap processing).

The format of the Master Status register is shown
in Figqure 3-5. .

Figure 3-5. Master Status Register

-operation;

15 | '

User/System (U/S) Bit. While this bit is cleared .
to 0, the 2280 MPU 1is in the system mode of
while set to 1, the MPU is in the user
mode of operation. The current operating mode
determines which Stack Pointer is in use and which
instructions can be executed; privileged

instructions can be executed only while in system
mode. |

Breakpoint-on-Halt Enable (BH) Bit. While this

bit is set to 1, the CPU generates a breakpoint
trap whenever a Halt instruction is encountered;
while cleared to 0, the Halt instruction is
executed normally. '

Single-Step Pending (SSP) Bit. The CPU checks
this bit prior to the start of an instruction
execution and generates a Single-Step trap if this
bit is set to 1. The Single-Step bit is
automatically copied into this field at the
completion of an instruction. This bit is
automatically cleared when a Single-Step, Division
Exception, Access' Violation, Privileged
Instruction, or Breakpoint-on-Halt trap is
executed, so that the saved MSR has a 0 in this
bit position. (For these traps, the PC address of
the trapped instruction is saved for possible
re-execution.) " g | -

Single-Step (SS) Bit. This bit is the enable for

the single-step operating mode. While this bit is
set to 1, the CPU is in a single-step mode wherein
a Single-Step trap is generated for each
instruction; if cleared to 0, single-step mode is
disabled. oo o -

Interrupt Request Enable (E,) Bit. There are
seven interrupt enable bits in the MSR, one for
each type of maskable interrupt source. The 7280
MPU's interrupt sources, including both the
external interrupt requests and the on-chip
peripherals, are grouped into seven levels of
interrupt requests. While bit E, is set to 1,
interrupt requests from sources at level n are
accepted by the CPU; while E, is cleared to O,

interrupt requests from sources at level n are not
accepted.

The Master Status register is loaded with all
zeros by a reset. Bits 7, 10, 11, 13, and 15 of
the MSR always should be written with zeros.

| 3.3.2 Interrupt Status Register

!

The 16-bit Interrupt Status register indicates
which interrupt mode is in effect, which interrupt
requests are pending, and which interrupt requests
are to be vectored. Only the interrupt vector

enable bits are writeable; all other bits in this
register are read-only status bits. The fields in

the Interrupt Status register are shown in Figure
3-60

15 0

Figure 3-6.

o™

Interrupt Status Register

Interrupt Vector Enable (I,) Bits. These four
bits indicate which of the four external interrupt
inputs are to be vectored. While I, is set to 1,
interrupts on the Interrupt n line are vectored
when the CPU is in interrupt mode 3; while I, is
cleared to 0, that interrupt is not vectored.

These bits are ignored when not in interrupt mode
J.

Interrupt Mode (IM) Field. This 2-bit field
indicates the current interrupt mode in effect,
with a value n in this field' denoting interrupt
mode n. This field can be changed by executing
the IM instruction.

Interrupt Request Pending (IP,) Bits. When bit
IP, is a 1, an interrupt request from a source at
level n is pending.

On reset, the Interrupt Vector Enable bits are
cleared to all zeros, interrupt mode 0 is in
effect, and the Interrupt Pending bits reflect the
state of the interrupt requests. B8its 7, 10, and
11 of this register are not used.

3.3.3 Interrupt/Trap Vector Table Pointer

The 16-bit Interrupt/Trap Vector Table Pointer
contains the twelve most significant bits of the

physical memory address of the start of the |

Interrupt/Trap Vector Table. The Interrupt/Trap
Vector Table is a memory area that holds the

values that are loaded into the Master Status .

register and Program Counter during trap and
interrupt processing under interrupt mode 3, as
described in Chapter 6. The twelve low-order bits
of the 24-bit physical address are assumed to be
all zeros: thus, the Interrupt/Trap Vector Table
must start on a 4K byte boundary in physical
memory. The 1low-order four bits of the
Interrupt/Trap Vector Table Pointer must be all
zeros (Figure 3-7). -

mammmmmmmmmmnnnn

Flgure 3-7 InterruptITrap Vector Table Pointer

The contents of the Interrupt/Trap Vector Table
Pointer are wunaffected by a reset and are
undefined after power-up. When this register is
read, bits 3,2,1 and 0 may return a 1.

3.3.4 1/0 Page Register

The 8-bit I/0 Page register determines the upper
eight bits of the 24-bit peripheral address output
during execution of an I/0 transaction (Figure

~ 3-8). 1/0 pages FEH and FFH are reserved for

on-chip perlpheral addresses. |

o .
) A

Figure 3-8 o Page Reglster

The contents of the I/O Page. register are

cleared to all zeros by a reset.

3.3.5 Trap Control Register

The 8-bit Trap Control register contains the
enables for the maskable traps. °~ Figure 3-9
illustrates the format of this register.

ooooonon R
Figure 3-9. Trap Control Register -
\ .

Inhibit User I/0 (I) Bit. This bit determines
whether or not I/0 instructions are privileged
instructions. While this bit is set to 1, all 1/0
instructions are treated as privileged
instructions, and an attempt to execute an 1/0
instruction while in user mode results in a
Privileged Instruction trap. While this bit is
cleared to 0, I/0 instructions can be successfully
executed in user mode. I/0 instructions can

always be executed in system mode, regardless of
the state of this bit.

EPU Enable (E) Bit. This bit indicates whether or
not an Extended Processor Unit (EPU) is available
in the system for execution of extended in-
structions. If this bit is cleared to 0,
indicating that no EPUs are present, the CPU
generates an Extended Instruction trap whenever an
extended instruction is encountered. If this bit
is set to 1, the CPU performs whatever data
transfers are indicated by the extended in-
struction opcode, and assumes that the EPU is
present to execute the instruction. |

3-5

System Stack Overflow Warning (S) Bit. This is
the enable bit for the System Stack Overflow
Warning trap. wWhile it is set to 1, Stack
Overflow Warning traps can occur during a stack
access while in system mode, as determined by the
contents of the Stack Limit register. While this
bit is cleared to 0, Stack Overflow Warning traps
are disabled.

when a System Stack Overflow Warning trap is
generated. | |

The Trap Control register is cleared to all zeros

by a reset, indicating that I1/0 instructions are
not privileged, EPUs are not present in the
system, and Stack Overflow Warning traps are

disabled. Bits 3 through 7 of this register are
not used.

This bit is automatically cleared

3.3.6 System Stack Limit Register

The 16-bit System Stack Limit register determines
when a System Stack Overflow Warning trap is to be
generated. Pushes onto the system-mode stack
cause the 12 most significant bits of the logical
address of the System Stack Pointer to be compared
to the 12 most significant bits of this register;
a System Stack Overflow Warning trap is generated
if they match. The low-order four bits of this
register must be =zeros (Figure 3-10). This
register has no effect on MPU operation if the
System Stack Overflow Warning enable bit in the
Trap Control register is cleared to O.

mmmmmmmmlmmnnnn

Figure 3-10. System Stack Limit Reglster |

The contents of the System‘Stack Limit 'register
are cleared to zeros by a reset.

Chapter4. .
Addressing Modes and Data Types

4.1 INTRODUCTION

An instruction is a consecutive list of one or
more bytes in memory. Most instructions act upon
some data; the term operand refers to the data to
be operated upon. For 2280 CPU instructions,
operands can reside in CPU registers, memory
locations, or I/0 ports.
designate the location of the operands for an
instruction are called addressing modes. The 72280
CPU supports nine addressing modes: Register,
Immediate, Indirect Register, Direct Address,
Indexed, Short Index, Program Counter Relative
Address, Stack Pointer Relative, and Base Index.

A wide variety of data types can be accessed using
these addressing modes. |

4.2 ADDRESSING MODE DESCRIPTIONS

The following pages contain descriptions of the
addressing modes for the 7280 CPU. Each
description explains how the operand's location is
calculated, indicates which address spaces can be
accessed with that particular addressing mode, and
gives an example of an instruction using that
mode, illustrating the assembly language format
for the addressing mode. The examples wusing
memory addresses use logical memory addresses; if
the MMU is enabled, these logical addresses can be
translated to physical addresses before the
physical memory is accessed, but this process is
not discussed or illustrated here.

4.2.1 Register (R, RX)

When this addressing mode is used, the instruction
processes data taken from one of the B8-bit
registers A, B, C, D, E, H, L, IXH, IXL, IYH, IYL,
or one of the 16-bit registers BC, DE, HL, 1X, 1Y,
SP, or one of the special byte registers I or R.

Storing data in a register allows shorter
instructions and faster execution than occur with
instructions that access memory.

The methods used to

4.2.2 Immediate (IM)

INSTRUCTION REGISTER

OPERATION | REGISTER OPERAND

. THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in fhe register address
space. The register length (byte or word) is
specified by the instruction opcode. '

Example of R mode: -

LD BC,HL s1oad the contents of HL into BC

Before instruction execution: After instruction execution:

A 6 B 8 .'BC:JFQAZO
9 A2 ol - HL: |9 A 2 0

BC:
HL:

When the Immediate addressing mode is used, the

data processed is in the instruction.

The Immediate addressing mode 1s | the only mode
that does not indicate a register or memory
address as the source operand. '

INSTRUCTION

OPERATION
'OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

.
- .
.

Because an immediate operand is part of the
instruction, it is always located in the program

memory address space. Immediate mode is often
used to initialize registers. = |

Example of IM mode:

LD A,55H ;load hex 55 into the accumulator

Before instruction execution: After instruction execution:

A: 6 7 A: 5 5

4.2.3 Indirect Register (IR)

In the Indirect Register addressing mode, the
register specified in the instruction holds the
address of the operand. The data to be processed
is at the location specified by the HL register
for .memory accesses or the C register for I/0 and
control register space accesses. For the Load
Byte instruction, BC and DE can also be used in
addition to HL.

DATA MEMORY,

' 1/0 PORT, OR
INSTRUCTION REGISTER CONTROL REGISTER

OPERATION | REGISTER m OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

Depending on the instruction, the operand
specified by IR mode is located in either the 1/0
address space (I/0 instructions), control register
space (Load Control instruction), or data memory
-address space (all other instructions).

The Indirect Register mode can save space and
reduce execution time when consecutive locations
are referenced or one location is repeatedly
accessed. This mode can also be used to simulate
more complex addressing modes, since addresses can
be computed before the data is accessed. |

"~ Example of IR mode:

LD A,(HL)
- . saddressed by the contents of HL

Before instruction execution: After instruction execution:

A for] A |oB]
HL [t 70c] - Hu |1 70C

Data memory:

1%00: |

4-2

;lo;d the accunulator with the data

4.2.4 Direct Address (DA)

When the Direct Address addressing mode is used,
the data processed is at the location whose memory
or I/0 port address is in the instruction.

INSTRUCTION
DATA MEMORY
ORI/0 PORT

OPERATION
ADDRESS OPERAND
THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION.

Depending on the instruction, the operand
specified by DA mode is either in the 1/0 address
space (I/0 instructions) or in the data memory
address space (all other instructions).

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded into the Prugram Counter.)

Example of DA mode:

sload BC with the data in

LD BC, (5E22H)
‘ saddress 5£22

Before instruction execution: After instruction execution:

BC: |6 7 8 9l BC: [0 3 0 1

Data memory:

5E22: o 1
5623: - |0 3

m

4.2.5 Indexed (X)

For this addressing mode, the data processed is at
the location whose address is the address in the
instruction offset by the contents of HL, IX, or
I1Y.

The indexed address is computed by adding the
address specified in the instruct'ion to a

INSTRUCTION

OPERATION | REGISTER

ADDRESS

REGISTER

twos-complement "index" contained in the HL, IX or
IY register, also specified by the instruction.
Indexed addressing allows random access to tables
or other complex data structures where the address
of the base of the table is known, but the
particular element index must be computed by the
program. |

DATA

OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

Operands specified by X mode are always in the
data memory address space.

Eianple of X mode:
LD A,(IX + 231AH) ;load into the accumulator
;the contents of the memory

s location whose address
s18 231AH + the value in IX

Address calculation:

231A
+01FE
2518

4.2.6 Short Index (SX)

When the Short Index addressing mode 1s used, the
data processed is at the location whose address is

the contents of IX or 1Y offset by an 8-bit signed .

displacement in the instruction. (Note that this
addressing mode was called "Indexed" in the Z80
CPU literature.) '

e

INSTRUCTION

OPERATION REGISTER
DISPLACEMENT

REGISTER

DDRESS

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION

Before instruction execution: After instruction execution:

A |2 3 | A I3 D ..
IX: 0O 1 F E ’ IX: O 1 F E
Data memory:

2518: 3 D

The short indexed address is computed by adding
the B8-bit twos-complement signed displacement

. specified in the instruction to the contents of

the IX or IY register, also specified by the
instruction. Short Index addressing allows random
access to tables or other complex data structures .
where the address of the base of the table is
known, but the particular element index must be
computed by the program.

DATA
MEMORY

OPERAND

WHOSE ADDRESS IS THE ADDRESS IN THE INSTRUCTION,
OFFSET BY THE CONTENTS OF THE REGISTER.

Operands specified by SX mode are always in the
data memory address space.

Example of SX mode:

sload into the accumulator the
scontents of the memory location
swhose address is one less than
sthe contents of IX

LD A,(IX - 1)

Before instruction execution: Afterinstruction execution:

A o 1 ' A s D
IX: 2 0 3 A IX: 2 0 3 A
\
Data memory:
2039: | 3 D

Address calculation: FF encoding in the instruc-

tion is sign-extended before
the address calculation.

203A
+FFFF
2039

4.2.7 Program Counter (PC) Relative Address (RA)

For Program Counter Relative Addressing mode, the
data processed is at the location whose address is
the contents of the Program Counter offset by an

8- or 16-bit displacement given in the
instruction.

The instruction specifies a twos-complement signed
displacement that is added to the Program Counter
to form the target address. Except for extended
instructions, the Program Counter value used is
the address of the first instruction following the
currently executing instruction. For extended
instructions, the address used to calculate the
displacement is the address of the template.

INSTRUCTION | PC
PROGRAM
ADDRESS MEMORY

: OPERATION
DISPLACEMENT
" THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION

- WHOSE ADDRESS IS THE CONTENTS OF PC OFFSET BY THE
DISPLACEMENT IN THE INSTRUCTION.

 An opefand specified by RA mode is always in the
program memory address space. '

The Program Counter Relative Addressing mode 1is
used by certain program control instructions to
specify the address of the next instruction to be
executed (specifically, the result of the addition
of the Program Counter value and the displacement
is loaded into the Program Counter). Relative
addressing allows references forward or backward
from the current Program Counter value; it is used
for program control instructions such as Jumps and

for lLoads that access constants in the program .

address space.

Exaﬁple‘pf’RA mode : S L

s load the accumulator with the_
scontents of the memory location
swhose address is LABEL

LD A,<LABEL>

4-4

LD A,<$ + 6>

OPERAND

- LABEL: 0208:

This format implies that the assembler will
calculate the displacement from the current PC
value to the specified label. Alternatively,
slightly different syntaxes can be used for the RA
mode if the actual displacement from the
instruction using this mode is known. Thus, this

example can also be written in the following
manner:

sload the accumulator with the
scontents of the memory location

~ swhose address is six more than
sthe address of the start of this
;LD instruction

or

sload the accumulator with the
;contents of the memory location
swhose address is two more than
sthe current PC, which now points
sto the next instruction

LD A,(PC + 2)

Because the Program Counter is advanced to point
to the next instruction when the address
calculation is performed, the constant that occurs
in the instruction is +2,

2
!

Before instruction execution: After instruction execution:

7 6]

0 20 6]

A |2 3 | A:
Pc: o 2 0 2 - PC:

Program memory: = - .

0202:
0203:

- 0204:
0205:
0206: 1
0207: 0 1 | |
7 6 .' o '_

Lo

instruction

oOjojiN ™M

oiloldvlolOL

..Address calculation:

0206
+ 2
0208

M

4.2.8 Stack Pointer Relative (SR) S Example of SR mode: = = T

For the Stack Pointer Relative addressing mode, LD A,(SP +2) ~ 3load into the accumulator
the data processed is at the location whose | ;the contents of the memory
address is the contents of the Stack Pointer . S | s location whose address is
offset by a 16-bit displacement in the ".' o stwo more than the contents
instruction. - . ‘ S I sof SP

The instruction specifies a twos-complement Before instruction execution: After instruction execution:
displacement that is added to the contents of the e

Stack Pointer register to form the address. An A 6 9] - | | A |F 3

operand specified by SR mode is always in the data s- ls 2 o0 ol N -‘ SP:. 8 2 0 OJ \
memory address space. R]
- Data memory: .
* " INSTRUCTION SP . R
INSTRUCTION S
DISPLACEMENT . - 8001, - '
. . | ‘ 8202: F 3
The SR addressing mode is used to specify data ,_ | 8203: 2 8|
items to be found in the stack such as parameters - . . = r_]
passed to subroutines. The System Stack Pointer | o
or User Stack Pointer is selected depending on the Address calculation:
state of the User/System bit in the Master Status 8200 -
register. - . g)
+

Va4

8202

. 4.2.9 Base Index (BX)

For the Base Index addressing 'mo.de., 't‘he data .'.contents of HL, IX, or IY, offset by the contents

processed is at the location whose address is the of another of these three registers. . .
e
' ' - . - DATA
INSTRUCTION REGISTERS . MEMORY

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION

WHOSE ADDRESS IS THE CONTENTS OF THE ONE REGISTER

OFFSET BY THE DISPLACEMENT IN THE SECOND REGISTER.
This mode allows access to memory locations whose - Before instruction execution: After instruction execution:
physical addresses are computed at run time and | . oy
are not fully known at assembly time. An operand A B C A A JA 2 7
gpecified by BX mode is always in the data memory HL: 1 5 0 2 . - HL: 1 5 0 2
addr_ess space. | IX: |F F F E IX: [F F F F

Example of BX mode:
Data memory:

LD A,(HL + IX) ;load into the accumulator the

scontents of the memory location 1500: EE:E]
swhose address is the sum of the
scontents of the HL and IX ' Address calculation:
sregister |
1502
+FFFE | : \
1500 L «

4-5

'~ operate on words in registers or memory;
can be treated as signed or unsigned numeric

4.3 DATA TYPES

Many data types are supported by the 27280 MPU
architecture; that is, many data types have a
hardware representation in a 7280 MPU system and
instructions that directly apply to them. The
2280 MPU supports operations on bytes,
bits, BCD digits, and byte strings.

words,

The basic data type is a byte, which is also the
basic addressable element in the register, memory,
and I/0 address spaces. The 8-bit 1load,
arithmetic, logical, shift, and rotate
instructions operate on bytes in registers or
memory. Bytes can be treated as logical, signed
numeric, or unsigned numeric values. |

Operations on two-byte words are also supported.
Sixteen-bit load and arithmetic instructions

words

I/0 reads and writes can be B8-bit or
16-bit operations. Sixteen-bit logical memory

values.

addresses can be held and manipulated in 16-bit -

registers.

Bits are fully supported and addressed by number
within a byte (see Figure 2-2). Bits within byte
'registers or byte memory locations can be tested,
set, or cleared. © |

Operations on binary-coded decimal (BCD) digits

are supported by the Decimal Adjust Accumulator
and Rotate Digit instructions. BCD digits are
stored in byte registers or memory locations, two
per byte. The Decimal Adjust Accumulator in-
struction is used after a binary addition or
subtraction of BCD numbers. The Rotate Digit

instructions are used to shift BCD digit strings
in memory.

Strings of up to 65,536 bytes can be manipulated
by the 2280 CPU's block move, block search, and
block I1/0 instructions. The block move
instructions allow strings of bytes in memory to
be moved from one location to another. Block
search instructions provide for scanning strings
of bytes in memory to locate a particdla; value.

The block 1/0 instructions allow strings of bytes -
or words to be transferred between memory and a
peripheral device. o

Arrays are supported by the Indexed, Short Index,
and Base Index addressing modes. Stacks are
supported by those same modes and the Stack
Pointer Relative addressing mode, and by special
instructions such as Call, Retufn, Push, and Pop.
A special stack write warning feature aids in the
allocation of system stack memory space.

Strings of up to 16 bytes can be transferred
between memory and an Extended Processing Unit
(EPU) during execution of an extended instruction.

7280 CPUs.
.~ discussed in relation to the 1instruction set.

- operations (Figure 5-1).

5.1 INTRODUCTION

The 2280 CPU's instruction set is a superset of

the Z80's; the 72280 CPU is opcode compatible with
the z280 CPU. Thus, a Z80 program can be executed
on a 27280 MPU without modification, The

instruction set is divided into ten groups by
function:

8-bit load
16-bit load and exchange
Block transfer and search
8-bit arithmetic and logical
16-bit arithmetic |
Rotate, shift, and bit manipulation
Program control
Input/Output
- CPU control
~Extended instructions

This chapter describes the instruction set of the
First, flags and condition codes are

Then, interruptibility of instructions is
. discussed and traps are described. The last part

" of this chapter is a detailed description of each

instruction, listed in alphabetic order by
mnemonic. This section is intended to be used as
a reference for 72280 MPU programmers. The entry
for each instruction contains a complete
description of the instruction, including

- addressing modes, assembly language mnemonics,
instruction opcode formats, and simple examples
illustrating the use of the instruction.

5.2 PROCESSOR FLAGS

The Flag register contains six bité of status

information that are set or

cleared by CPU
Four of these bits are
and S) for use with

or return instructions.

testable (C, P/V, 1Z,
conditional jump, call,

.. Two flags are not testable (H, N) and are used for

binary-coded decimal (BCD) arithmetic.

7 9.
slzfofn]ofev]nic

Figure 51. Flag Register

precision of the result.

- was last executed,

~correctly,
“struction for further information.

Chapter 5.

- Instruction Sét'--

The flags provide a 1link between sequentially
executed instructions, in that the result of
executing one instruction may alter the flags, and
the resulting value of the flags can be used to
determine the operation of a subsequent
instruction. The program control instructions
whose operation depends on the state of the flags
are the Jump, Jump Relative, subroutine Call, and
subroutine Return instructions; these instructions
are referred to as conditional instructions. .

5.2.1 Carry Flag (C)

The Carry flag is set or cleared depending on the |
operation being performed. For add instructions
that generate a carry and subtract instructions
that generate a borrow, the Carry flag is set to

1. The Carry flag is cleared to O by an add that

does not generate a carry or a subtract that
generates no borrow. This saved carry facilitates
software routines for . extended precision
arithmetic. The multiply and divide instructions
use the Carry flag to signal information about the

Also, the Decimal Adjust
Accumulator instruction leaves the Carry flag set .

to 1 if a carry occurs when adding BCD quantities.

For the rotate instructions, the Carry flag is

~used as a link between the least significant and

most significant bits for any register or memory
location., During shift instructions, the Carry

- flag contains the last value shifted out of any

register or memory location. For logical in- N
structions the Carry flag is cleared. The Carry

flag can also be set and complemented with
explicit instructions.

~ 5.2.2 Add/Subtract Flag (N)

- The Add/Subtract flag is used for BCD arithmetic.

Since the algorithm for correcting BCD operations
is different for addition and subtraction, this
flag is used to record whether an add or subtract
allowing a subsequent Decimal

ingtruction to perform
See the discussion of the DAA in-

Ad just Accumulator

5.2.3 Parity/Overflow Flag (P/V)

This flag is set to a particular state depending
on the operation being performed. ’
For signed arithmetic, this flag, when set to 1,
indicates that the result of an operation on
- twos-complement numbers has exceeded the largest
number, or is less than the smallest number, that
can be represented using t wos-complement
notation, This overflow condition can be
determined by examining the sign bits of the
operands and the result.

~The P/V flag is also used with logical operations

and rotate instructions to indicate the parity of
the result. The number of bits set to 1 in a byte
are counted. If the total is odd, odd parity (P =
0) is flagged. If the total is even, even parity
is flagged (P = 1).

During block search and block transfer
instructions, the P/V flag monitors the state of
the byte count register (BC). When decrementing
- the byte counter results in a zero value, the flag
is cleared to 0, otherwise the flag is set to 1.

During the ‘Load Accumulator with I or R register
instructions, the P/V flag is loaded with the

- contents of the Interrupt A enable bit in the
Master Status register. |

When iﬁputting a byte to a register from an I/0

device addressed by the C register, the flag is
- adjusted to indicate the parity of the data.

5.2.4 Half-Carry Flag (H)

The Half-Carry flag (H) is set to 1 or cleared to

0 depending on the carry and borrow status between

. bits 3 and 4 of an 8-bit arithmetic operation and
between bits 11 and 12 of a 16-bit arithmetic
operation, This flag is used by the Decimal
Adjust Accumulator instruction to correct the
result of an addition or subtraction operation on
packed BCD data. L |

5.2.5 Zero Flag (Z) !

The Zero flag (Z) is set to 1 if the result
generated by the execution of certain instructions
is a zero.

For ar'ithmetic and logical operatibns, the Zero

flag is set to 1 if the result is zero. If the
result is not zero, the Zero flag is cleared to 0.

'

5-2

" most significant bit.

For the block search instructions, the Zero flag
is set to 1 if a comparison is found between the
value in the Accumulator and the memory location

pointed to by the contents of the register pair
HL.

When testing a bit in a register. or memory
location, the Zero flag contains the complemented
state of the tested bit (i.e., the Zero flag is

set to 1 if the tested bit is a 0, and
vice-versa). |

- For the block I/0 instructions, if the result of

decrementing B is zero, the Zero flag is set to 1;
otherwise, it 1is cleared to 0. Also for byte

~inputs to registers from I/0 devices addressed by

the C register, the Zero flag is set to 1 to
indicate a zero byte input.

5.2.6 Sign Flag (S)

The Sign flag (S) stores the state of the most
significant bit of the result. When the Z280 CPU
performs arithmetic operations on signed numbers,
binary twos-complement notation is used to
represent and process numeric information. A
positive number is identified by a zero in the
A negative number is
identified by a 1 in the most significant bit.

When inputting a byte from an I/0 device addressed
by the C register to a CPU register, the Sign flag
indicates either positive (S = 0) or negative (S =

1) data.

For the Test and Set instruction, the Sign bit is
set to 1 if the tested bit is 1, otherwise it is

cleared to 0.

5.2.7 Condition Codes .
The Carry, Zero, Sign, and Parity/Overflow flags
are used to control the operation of the con-
ditional instructions. The operation of these in-
structions is a function of the state of one of
the flags. Special mnemonics called condition
codes are used to specify the flag setting to be
tested during execution of a conditional
instruction; the condition codes are encoded into .
a 3-bit field in the instruction opcode itself.

fable 5-1 lists the condition code mnemonic, the
flag setting it represents, and the
encoding for each condition code.

binary

o particular

' block search,

Table 5-1. Condition Codes

Flag Binary

Mnemonic Meaning Setting Code

Condition Codes for Jump, Call, and Return Instructions
NZ Not Zero

Z=0 000

Z Zero Z=1 001
NC No Carry C=0 010
C | Carry o C=1 . . 011
NV | No Overflow V=0 100
- PO Parity Odd V=20 | 100
\" | Overflow V=1 - 101
PE - Parity Even V=1 ' 101
NS ~ No Sign S=0 110
P Plus S=0 © 110
S Sign S=1 111
M Minus S =1 111

Condition Codes for Jump Relative Instruction

NZ ~ Not Zero Z=0 - 100
Z . Zero Z=1 101
NC _ No Carry C=0 110
C=1 111

c Carry

5.3 INSTRUCTION EXECUTION AND EXCEPTIONS

Two types of exception conditions, interrupts and
traps, can alter the normal flow of program
. execut ion, Interrupts are asynchronous events
generated by a device external to the CPU;
peripheral devices use interrupts to request
service from the CPU. Traps are synchronous
events generated internally in the CPU by
conditions that occur during
instruction execution. Interrupts and traps are
discussed in detail in Chapter 6. This section
examines the relationship between instructions and
the exception conditions.

i

<T 5.3.1 Instruction Execution and Interrupts

 When the CPU receives an interrupt request, and it

is enabled for interrupts of that class, the
interrupt is normally processed at the end of the
current instruction. However, the block transfer
and search instructions are designed to be inter-
ruptible so as to minimize the length of time it
takes the CPU to respond to an interrupt. If an
B interrupt request is received during a block move,
or block I/0 instruction, the in-
- struction is suspended after the current iter-
~ation., The address of the instruction itself,
rather than the address of the following in-

.- struction, is saved on the system stack, so that
- the same instruction is executed again when the

if_ interrupt handler executes an interrupt return

C -~ __ _ A

-

" I/0 instructions to

instruction. The contents of the repetition
counter and the registers that index into the
block operands are such that, after each iter-
ation, when the instruction 1is reissued upon
returning from an interrupt, the effect is the
same as if the instruction were not interrupted.
This assumes, of course, that the interrupt
handler preserved the registers.

5.3.2 Instruction Execution and Traps

Traps are synchronous events that result from the
execution of an instruction. The action of the
CPU in response to a trap condition is similar to
the case of an interrupt in interrupt mode 3 (see
Chapter 6). All traps except for Extended
Instruction, System Stack Overflow Warning,

Single Step and Breakpoint-on-Halt are nonmask-
able.

The 7280 MPU supports eight kinds of traps:

Division Exception

- Extended Instruction
Privileged Instruction
System Call -
Access Violation (page fault and write protect)
System Stack Overflow Narnlng

" Single Step .
Breakpoint-on-Halt

The Division Exception trap occurs when executing

- a divide instruction if either the divisor is zero

or the result cannot be

represented in the
destination (overflow). S

Instruction trap occurs when an
extended instruction is encountered, but the
Extended Processor Architecture is disabled,
(the EPA bit in the Trap Control register should
be cleared to 0 if there is no EPU in the system
or if the 72280 MPU is configured with an 8-bit
bus). This allows the same software to be run on
2280 MPU system configurations with or without
Extended Processing Units (EPUs). For systems
without EPUs, the desired extended instructions
can be emulated by software that is invoked by the
Extended Instruction trap. For systems with an
8-bit data bus that also have an EPU, the software
invoked by the Extended Instruction trap can use
access the EPU. The
information saved on the system stack during this

The Extended

‘trap is designed to facilitate the 8-bit 1/0
- interface to an EPU by

providing address
calculation for the operands and by pushing
addresses onto the system stack in the reverse
order from which they will be used by an 1/0
interface trap handler.

5-3

" mode. An

' .. access.

The Privileged Instruction trap'serves to protect
the integrity of a system from erroneous or
unauthorized actions of wuser mode processes.
Certain - instructions, - called privileged
instructions, can be executed only
attempt to execute one of these
instructions in wuser mode causes a Privileged
Instruction trap. | | |

The System Call instruction always causes a trap.
This instruction is used to transfer control to
system mode software in a controlled way,
typically to request operating system services. -

- The Access Violation trap occurs whenever the 7280
 MPU's on-chip MMU detects an illegal memory
Access Violation traps cause instructions
to be aborted. When Access Violation traps occur,
- the logical address of the instruction is pushed

onto the system stack along with the Master Status
register; part of the logical address that caused
~the page fault is latched in the MMU to indicate
which page frame caused the fault; and the CPU
registers are unmodified, i.e., their contents are
the same as just before the instruction execution
began. (For block move, block search, or block

I/0 instructions, the registers are the same as
 just before the iteration in whlch the page fault

occurred)

5The System Stack Overflow Warning trap arises
when pushing information onto the system stack
.. causes the Stack Pointer to reference a specified
16-byte area of memory.

pfotects the system from system stack overflow
errors. | |

The Single Step trap occurs with the execution of
- each instruction, provided the Single-Step control
- bit in the Master Status register is set to 1.
" This facilitates software debugging of programs.

in system

~into byte registers or memory.
- modes

- values into memory.

Use of this facility
- successfully

. The Breakpoint-on-Halt trap occurs whenever the

Halt instruction is encountered and the
Breakpoint-on-Halt control bit in the Master
Status reqister is set to 1. This facilitates
software debugging of programs. o

5.4 INSTRUCTION SET FUNCTIONAL GROUPS

" This section presents an overview of the 7280

instruction set, arranged by functional groups.
(See Section 5.5 for an explanation of the
notation used in Tables 5-2 through 5-11.) |

. 5.4.1 8-Bit Load Group

This group of instructions (Table 5-2) includes
load instructions for transferring data between
byte registers, transferring data between a byte
register and memory, and loading immediate data
All addressing
are supported for loading between the
accumulator and memory or for loading immediate
Loads between other registers
and memory use the IR and SX addressing modes. An
exchange instruction is available for swapping the
contents of the accumulator w1th another reglster

'_ or with memory.

The LDUD and LDUP instructions are available for

" loading to or from the user-mode memory address

space while executing in system mode. The CPU
flags are used to indicate if the transfer was -
completed. LDUD and LDUP are
privileged instructions. The other instructions
in this group do not affect the flags, nor can
thelr executlon cause exception condltlons.

~ Table 5-2. 8-Bit Load Group instmctioné

l'nstruction Name |

- Addressing Modes Available

Format RX M IR DA X SX RA SR BX
- Exchange Accumulator EX A,src . L e e e e o . o o
 ExchangeH.L - EXHL | o
- Load Accumulator LD A,src o o o o ® o °
. | - LD dSt,A' | ° 'Y ° ° ° ° °
Load Immediate LD dst,n g o o o ° o o
Load Register (Byte) LD R,src K o ° L]
| | | LD dstR . " o .
Load in User Data Space LDUD A,src - 0 .
R o LDUD dst A . .
Load in User Program Space - LDUP A src .. .
: o

LDUP dst,A

5.4.2 16-Bit Load and Exchange Group

This group of load and exchange instructions
(Table 5-3) allows words of data (two bytes equal
one word) to be transferred between registers and
memory. The exchange instructions allow for
switching between the primary and alternate
reqister files,
16-bit registers, or exchanging the contents of an

addressing register with the top word on the

exchanging the contents of two.

registers and memory and immediate loads of
registers or memory. The Load Address instruction
facilitates the loading of the address registers
with a calculated address. The Push and Pop stack
instructions are also included in this group.
None of these instructions affect the CPU flags,
except for EX AF, AF'., The Push instruction can
cause a System Stack Overflow Warning trap;
otherwise, no exceptions can arise from the

execution of these instructions.

stack. The 16-bit loads include transfers between

!

Table 5-3. 16-Bit Load and Exchange Group Instructions

o | . Addressing Modes Available
Instruction Name Format R M

IR DA X SX RA SR BX
Exchange HL with Addressing Register EXDE HL | | ,
T | . EXXYHL ey
Exchange Addressing Register with Top of Stack ..~ EX (SP),XX
b Exchange Accumulator/Flag with Alternate Bank EX AFAF’
o 'Exchange Byte/Word Registers with Alternate Bank EXX SR S . SR |
- Load Addressing Register LD XX,src | e e o e e e
| - | LDdstXX -~ . e e e .e e
" . Load Register (Word) | . LDRRsrc .. - e e e e |
. - . y o . | - LD dSt,RR - R ° ° - o |
“Load Immediate Word e LDdstnn @ e e e e
- Load Stack Pointer LD SPsrc . * e o e e
S LDdstSP - e e e . Eo
' Load Address - LDA XX,src e . e 0 o
Pop | - POPdst o = e e | o o
. Push PUSHsrc o o o o T e

*Restricted to an addressing register (HL, IX, or IY).

5.4.3 Block Trvu\sfo‘r and Search Group interruptible; ‘this is essential since

the

| | | repetition count can be as high as 65,536, The

This group of instructions (Table 5-4) supports instruction can be interrupted after any
block transfer and string search functions. Using iteration, in which case the address of the

these instructions, a block of up to 65,536 bytes
can be moved in memory or a byte string can be
searched until a given value is found. All the
operations can proceed through the data in either
direction. Furthermore, the operations can be
repeated automatically while decrementing a length
counter until it reaches zero, or they can operate
on one storage unit per execution with the length
counter decremented by one and the source and
destination pointer registers properly adjusted.

instruction itself, rather than the next one, is
saved on the system stack; the contents of the
operand pointer registers, as well as the
repetition counter, are such that the instruction
can simply be reissued after returning from the
interrupt without any visible difference in the
instruction execution. | | | |

Table 5-4. Block Transfer and Search Group

The latter form is useful for implementing more Instruction Name - Format
complex operations in software by adding other . Compare and Decrement CPD
instructions within a loop containing the block - ,
. . . - Compare, Decrement and Repeat CPDR
instructions. - .

L | | | Compare and Increment CPl . o
Various 7280 MPU registers aré. de‘dic‘ated to Compare, Increment and Repeat CPIR
specific functions for these instructions: the BC - Load and Decrement - Lob
register for a counter, the DE and HL registers Load, Decrement and Repeat LDDR
for memory pointers, and the accumulator for - Load and Increment Lot
holding the byte value being sought. The repeti- = - Load, Increment and Repeat LDIR
tive forms of - these instructions are

5.4.4 8-8Bit Arithmetic and Logic Group

- This group of instructions (Table 5-5) performs
8-bit arithmetic and logical operations. The Add,
Add with Carry, Subtract, Subtract with Carry,
And, Or, Exclusive Or, Compare, and signed and
unsigned Multiply take one input operand from the
accumulator and the other from a register,
immediate data in the instruction itself, or from
memory. All memory addcessing modes are
supported: Indirect Register, Short Index, Direct
Address,PC Relative Address, Stack
Relative, Indexed, and Base Index.
multiplies, which return the 16-bit result to the
HL register, these instructions return the
computed result to the accumulator. Both signed

Pointer

Except for the

from -

and unsigned division are provided. All memory

addressing modes except Indirect Reqgister can be
used to specify the divisor.

The Increment and Decrement instructions operate
on data in a register or in memory; all memory
addressing modes are supported. Three
instructions operate only on the accumulator:
Decimal Adjust, Complement, and Negate. The final
instruction in this group, Extend Sign, takes its
B8-bit input from the accumulator and returns its
16-bit result to the HL register.

All these instructions except Extend Sign set the

CPU flags according to the computed result. Only
the Divide instructions can generate an exception.

Table 5-5. 8-Bit Arithmetic and Logic Group

Addressing Modes Available

Instruction Name Format R RX IM IR DA X SX RA SR BX
- Add With Carry (Byte) ADC A,src L ° ® e o o e o o o

Add (Byte) ADD A,src o . ° ° ° e o .) .

And - AND Asrc © o o e o o o o o o

Compare (Byte) CP A src ° ° ° ° J) ‘e o o o

Complement Accumulator CPL A |

Decimal Adjust Accumulator DAA A

Decrement (Byte) DEC dst . ° o ° ° o))

Divide (Byte) - DIV A,src e e - @ o o . . .

Divide Unsigned (Byte) DIVU A,src L ° L ° o o ° o o

Extend Sign (Byte) | EXTS A

Increment (Byte) ~_INC dst e o e o o o o e o

Multiply (Byte) MULT A,src ® ° ° ° ° ° °

Multiply Unsigned (Byte) MULTU A,src o ® L ° o o ° ° o o

Negate Accumulator NEG A

Or . OR A,src ® ° ° ° ° ° ° ° ° °

Subtract With Carry (Byte) SBC A,src ° ° J J o

Subtract (Byte) SUB A, src o o o o o N . ° ° o

Exclusive OR XOR A,src . o o o o . . o o °

5.4.5 16-Bit Arithmetic Operations

This group of instructions (Table 5-6) provides
16-bit arithmetic operations.
Carry, Subtract with Carry, and Compare
instructions take one input operand from an
addressing register and the other from a 16-bit
register or from the instruction itself; the
result is returned to the addressing register.
The 16-bit Increment and Decrement instructions
operate on data found in a register or in memory;
the Indirect Register, Dicect Address or PC
Relative addressing mode can be used to specify
the memory operand. The instruction that adds the
contents of the accumulator to an addressing
register supports the use of signed byte indices
into tables or arrays in memory.

The Add, Add with

The remaining 16-bit instructions provide general
arithmetic capability using the HL registec as one
of the input operands. The word Add, Subtract,
Compare, and signed and wunsigned Multiply
instructions take one input operand from the HL
register and the other from a 16-bit register,
from the instruction itself, or from memory using
Indexed, Direct Address, or Relative addressing
mode. The 32-bit result of a multiply is returned
to the DE and HL registers, with the DE register
containing the most significant bits. The signed
and unsigned divide instructions take a 32-bit
dividend in the DE and HL registers (the DE
register containing the most significant bits) and
a 16-bit divisor from a register, from the
instruction, or from memory using the Indexed,
Direct Address, or Relative addressing mode. The

m

5-6

1

L

‘“

16-bit quotient is returned to the HL register and
the 16-bit remainder 1is returned to the Ot
register. The Extend Sign instruction takes the
contents of the HL rcegister and delivers the
32-bit result to the DE and HL registers, with the
DE register containing the most significant bits
of the result. The Negate HL instruction negates

the contents of the HL register.

Except for Increment, Decrement, and Extend Sign,
all the instructions in this group set the CPU
flags to reflect the computed result. The only
instructions that can generate exceptions are the
Divide instructions.

Table 5-6. 16-Bit Arithmetic Operation Instructions

Addressing Modes Available

Instruction Name Format R M IR DA X RA
Add With Carry (Word) - ADC XX,src K -

Add (Word) ADD XX,src -

Add Accumulator to Addressing Register ADD XX A L) -

Add Word ADDW HL,src e o e o o
Compare (Word) CPW HL,src o o . o o
Decrement (Word) DECW dst ° ® . o °
Divide (Word) DIV DEHL,src) °) e o
Divide Unsigned (Word) - DIVU DEHL,src * o o e e
Extend Sign (Word) EXTS HL | | . L
Increment (Word) INCW dst . o ° ® ° °
Multiply (Word) MULT HL,src e ° ° ®
Multiply Unsigned (Word) MULTU HL,src L ° e .o
Negate HL NEG HL | | | .
Subtract With Carry (Word) . SBC XX,src S ° ‘ o)
Subtract (Word) SUBW HLsrc B ¢ o e e . e

A e .
9.4.6 Bit Manipulation, Rotate and Shift Group

Instructions in this group (Table 5-7) test, set,
" and reset bits within bytes and rotate and shift
byte data one bit position. Bits to be
manipulated are specified by a Ffield within the
instruction. Rotation can optionally concatenate
the Carry flag to the byte to be manipulated.
Both left and right shifting is supported. Right
shifts can either shift 0 into bit 7 (logical
shifts) or can replicate the sign in bits 6 and 7
(arithmetic shifts). The Test and Set instruction
is useful in multiprogramming and multiprocessing
environments for implementing synchronization
mechanisms between processes. All these
instructions except Set Bit and Reset Bit set the
CPU flags according to the calculated result; the
operand can be a register or a memory location
specified by the Indirect Register or Short
Index addressing modes.

The RLD and RRD instructions are provided for
“manipulating strings of BCD digits; these rotate
- 84-bit quantities in memory specified by the
indirect reqister. The low-order four bits of the
accumulator are used as a link between rotations
of successive bytes.

None of these instructions generate exceptions.

“ SR

- and thereby

5.4.7 Program Control Group

T / ,
This group . (Table 5-8) consists of the
instructions that affect the Program Counter (PC)
control program flow. The CPU
registers and memory are not altered except for
the Stack Pointer and the stack, which play a -
significant role in procedures and interrupté.
(An exception is Decrement and Jump if Non-Zero
[DINZ], which uses a register as a loop counter.)
The flags are also preserved except for the two
instructions specifically designed to set and
complement the Carry flag.

The Jump (JP) and Jump Relative (JR) instructions
provide a conditional transfer of control to a new

location if the processor flags satisfy the
condition specified in the instruction. Jump
Relative is a 2-byte instruction that jumps to any
instruction within the range -126 to +129 bytes
from the location of this instruction. Most
conditional jumps in programs are made to
locations only a few bytes away; the Jump
Relative instruction exploits this fact to improve
code compactness and efficiency.

A special 'Jump instruction tests whether the
primary or auxiliary register file is being used
and branches if the auxiliary file is in use. In

5-7

Table 5-7. Bit Manipulation, Rotate and Shift Group

Instruction Name

Formai

Addressing Modes Available

R IR SX

Bit Test BIT dst ° o °
Reset Bit RES dst o o o
Rotate Left RL dst o o o

. Rotate Left Accumulator RLA
Rotate Left Circular RLC dst ° o o
Rotate Left Circular (Accumulator) RLCA
Rotate Left Digit - / RLD .
Rotate Right - RR dst . . .
Rotate Right Accumulator RRA ‘ |
Rotate Right Circular RRC dst o o o '
Rotate Right Circular (Accumulator) RRCA
Rotate Right Digit RRD °
Set Bit SET dst o o °
Shift Left Arithmetic SLA dst o o °
Shift Right Arithmetic SRA dst o o o
Shift Right Logical SRL dst o ° o
Test and Set TSET dst o o o

systems that reserve the auxiliary register file
for interrupt handlers only (via a software
convention), this instruction can be used to
decide whether registers must be saved.

Call and Restart are used for calling subroutines;
“the current contents of the PC are pushed onto the
processor stack and the effective address
indicated by the instruction is loaded into the
PC. The use of a procedure address stack in this
manner allows straightforward implementation of
nested and recursive procedures. Call, Jump, and

Jump Relative can be unconditional or based on the
setting of a CPU flag. | |

/

Jump and Call instructions are available with the

- Indirect Register and PC Relative Address modes in
" addition to the Direct Address mode. These can be

useful for implementing complex control structures
such as disgpatch tables. When using Direct
Address mode for a Jump or Call, the operand is
used as an immediate value that is loaded into the
PC to specify the address of the next instruction
to be executed.

The conditional Return instruction is a companion
to the Call instruction; if the condition
specified in the instruction is satisfied, it
loads the PC from the stack and pops the stack.

Table 5-8. Program Control Group Instructions

Addressing Modes Available

Instruction Name Format IR DA RA
Call - e | CALL cc,dst e o o
Complement Carry Flag CCF

‘Decrement and Jump if Non-Zero DJNZ dst .
Jump on Auxiliary Accumulator/Flag JAF dst o
Jump on Auxiliary Register File in Use JAR dst K
Jump . - | | JP cc,dst ° ° ®
Jump Relative JR cc,dst o
Return | "RET cc

Restart | | | RST p l'
System Call I S ~ SCnn

Set Carry Flag | E . SCF

5-8

M

A special instruction, Decrement and Jump if
Non-Zero (DINZ), implements the control part of
the basic Pascal FOR loop in a
instruction.

System Call (SC) is used for controlled access to
facilities provided by the operating system. It
is implemented identically to a trap or interrupt
in interrupt mode 3: the current program status
is pushed onto the system stack, and a new program

status is loaded from a dedicated part of memory. -

5.4.8 Input/Output Instruction Group

This group (Table 5-9) consists of instructions

for transferring a byte, a word, or a string of -

bytes or words between peripheral devices and the
CPU registers or memory.
transfer bytes on ADg-AD7 only. Thus in a 16-bit
data bus environment, B8-bit peripherals must be
connected to bus lines ADg-AD7. In an B-bit data
bus environment, word I/0 instructions to external
peripherals should not be used; however, on-chip
peripherals can still be accessed by word 1/0
instructions.

The instructions for transferring a single byte

(IN, OUT) can transfer data between any 8-bit CPU.

register or memory address specified in the

instruction and the peripheral port specified by

the contents of the C reqister. The IN
instruction sets the CPU flags according to the
input data; however, special cases of these
instructions, restricted to
accumulator and Direct Address mode, do not affect
- the CPU flags. Another variant tests an 1input
port specified by the contents of the C register
and sets the CPU flags without modifying CPU
reqgisters or memory. .

The instructions for transferring a single word
(INW, OUTW) can transfer data between the HL
register and the peripheral port specified by the
contents of the C register. For word I/0, the
contents of H appear on ADg-AD7 and the contents
of L appear as ADg-AD15. These instructions do
not affect the CPU flags. | -

The remaining instructions in this group form a
powerful and complete complement of instructions
for transferring blocks of data between 1/0 ports
and memory. The operation of these instructions
is very similar to that of the block move instruc-
tions described earlier, with the exception that
one operand is always an I/0 port whose address
remains unchanged while the address of the other
operand (a memory location) is incremented or
decremented. Both byte and word forms of these
instructions are available. The automatically

one-word

Byte I/0 port addresses -

using the CPU

- repeating forms of these instructions are inter-

ruptible.

I/0 instructions are not privileged if the Inhibit
User I/0 bit in the Trap Control register is
clear; they can be executed in either system or
user mode, so that 1/0 service routines can
execute in user mode. The Memory Management Unit
and on-chip peripherals' control and status
registers are " accessed using the I/0
instructions. The contents of the I/0 Page

~ register are output on ADy3-ADqg with the 1/0 port

address and can be used by external decoding to
select specific devices. Pages FF and FE are
reserved for on-chip I/0 and no external bus
transaction is generated. I/0 devices can be
protected from unrestricted access by using the
I/0 Page register to select among 1/0 peripherals.

Table 5-9. Input/Output Instruction Group Instructions

Instruction Name Format

Input -~ IN dst,(C)
Input Accumulator "IN A(n)

Input HL . 3 INW HL,(C)
Input and Decrement (Byte) - 'IND

Input and Decrement Word) -~ INDW .
Input, Decrement and Repeat (Byte) - INDR
Input, Decrement and Repeat (Word) INDRW

Input and Increment (Byte) | NI

Input and Increment (Word) T INIW

Input, Increment and Repeat (Byte) = INIR

Input, Increment and Repeat (Word) B INIRW o
Output | - o OuUT (C),src
Output Accumulator OUT (n),A
Output HL OUTW (C),HL
Output and Decrement (Byte) OuUTD
Output and Decrement (Word) OUTDW
Output, Decrement and Repeat (Byte) OTDR
Output, Decrement and Repeat (Word) OTDRW
Output and Iincrement (Byte) | outi - -
Output and Increment (Word) ~ OTIRW
Output, Increment and Repeat (Byte) OTR .
Output, Increment and Repeat (Word) OTIRW

Test Input | | - TSTI (C)

5.4.9 CPU Control Group

The instructions in this group (Table 5-10) act
upon the CPU control and status registers or
perform other functions that do not fit into any
of the other instruction groups. There are three
instructions used for returning from an interrupt
or trap service routine. Return from Nonmaskable

~ Interrupt (RETN) and Return from Intecrrupt (RETI)

5-9

are used in interrupt modes 0, 1, and 2 to pop the
Program Counter from the stack and manipulate the
Interrupt Mask reqgister, or to signal a reset to
78400 Family peripherals. The Return from
Interrupt Long (RETIL) instruction pops a 4-byte

program status from the System stack, and is used

“in interrupt mode 3 and trap processing.

Two of these instructions are not privileged: No
Operation (NOP) and Purge Cache (PCACHE). The
remaining instructions are privileged.

Table 5-10. CPU Control Group

Instruction Name Format
Disable Interrupt DI mask
Enable Interrupt . El mask
Halt HALT
Interrupt Mode Select . IM p .
Load Accumulator From | or R Register - LD Asrc
Load | or R Register From Accumulator LD dst,A
Load Control | o LDCTL dst,src
No Operation NOP - |
Purge Cache | - PCACHE
Return From Interrupt 7 RETI

Return From Interrupt Long | RETIL

Return From Nonmaskable Interrupt RETN

5.4.10 Extended Instruction Group

The 2280 MPU architecture contains a power ful
. mechanism for extending the basic instruction set
through the use of external co-processors called
Extended Processing Units (EPUs). A group of 22
opcodes 1is dedicated for the implementation of
extended instructions using this facility. The
extended instructions (Table 5-11) are intended
. for use on a 16-bit data bus; thus, this facility
is available only on the Z-BUS configuration of
the 72280 MPU,

There are four types of extended instructions in
the 7280 MPU instruction set: EPU internal
operations, data transfers from an EPU to memory,
data transfers from memory to an EPU, and data
transfers between an EPU and the CPU's
accumulator. The extended instructions that
access memory can use any of the six basic memory
addressing modes (Indexed, Base Index, PC
Relative, SP Relative, Indirect Register, and
Direct Address). Transfers between the EPU and
CPU accumulator are useful when the program must

branch based on conditions generated by an EPU
operation. |

5-10

| the extended instruction opcodes.

. asterisks,

A 4-byte long "template" is embedded in each of
These templates
determine the operation to be performed in the EPU
itself. The formats of these templates are
described in the following pages. The
descriptions are from the point of view of the
CPU; that is, only CPU activities are described.
The operation of the EPU is implied, but the full
specification of the instruction template depends
on the implementation of the EPU, and is beyond
the scope of this manual. Fields in the template
that are ignored by the CPU are indicated by
and would typically contain opcodes
that determine any operation to be performed by
the EPU in addition to the data transfers
specified by the instruction. A 2-bit
identification field is included in each template,
for use in selecting one of up to four EPUs in a
multiple-EPU system. |

The action taken by the CPU upon encountering an
extended instruction depends upon the EPA control
bit in the CPU's Trap Control register. When this
bit is set to 1, indicating that EPUs are included
in the system, extended instructions are
executed. If this bit is cleared to 0, indicating
that there are no EPUs in the system, the CPU
executes an extended instruction trap whenever an
extended instruction is encountered; this allows a
trap service routine to emulate the desired -
operation in software. S K

Table 5-11. Extended Ihstructions

Instruction Name Format
Load EPU From Memory EPUM src
Load Memory From EPU MEPU dst
Load Accumulator From EPU | EPUF
EPU Internal Operation - EPUI

5.5 NOTATION AND BINARY ENCODING

The rest of this chapter consists of detailed
descriptions of the 72280 MPU instructions,
arranged in alphabetical order by mnemonic. This
section describes the notational conventions used
in the instruction descriptions and the binary

encoding for register fields within instruction's

operation codes (opcodes).

The description of each instruction begins on a

new page. The instruction mnemonic and name is
printed in bold letters at the top of each page to
enable the reader to easily locate a desired

m

description. The assembly language syntax 1is then
given in a single generic form that covers all the
variants of the instruction, along with a list of
applicable addressing modes. This is followed by
a description of the operation performed by the
instruction, a listing of all the flags that are
affected by the instruction, a listing of ex-
ception conditions that may be caused by execution
of the instruction, illustrations of the opcodes
for all variants of the instruction, and a simple
example of the use of the instruction.

The following notstion is used throughout the
descriptions of the instructions:

(addr) A direct address

{addr> An address to be encoded us1ng relative
addressing

b A 3-bit field specifying the p031t10n of
a8 bit within a byte

BX Base Index addressing mode

cc A condition code specifying whether a
flag is set to 1 or cleared to O

d An 8-bit signed displacement

DA Direct Address addressing mode -

dd A 16-bit signed displacement

disp The displacement calculated from the
address in relative addressing

dst - Dest ination location or contents

IM Immediate addressing mode |

IR Indirect Register addressing mode

MSR The Master Stsatus register

n - B-bit immediste dsta

nn 16-bit immediate data

P An interrupt mode

PC The Program Counter

PS The program status registers (the Program .

" Counter and Master Status register)

R A . single 8-bit register of the set
(A,B,C,D,E,H,L); also, R1 and R2 are used
when two different registers are
specified in the same instruction. (Note
that the R reqgister itself is accessed by
a single instruction and violstes thls

~ convention.)

R The corresponding 8-bit or 16-bit
register in the alternate register file,
such as A' '

RA - PC Relative Address addressing mode

RR A 16-bit register of the set (BC,DE,
HL,SP); also, RRA and RRB are used when
two different registers are Spec1f1ed in
the same instruction

RX A single byte in the IX or IY registers; -
that is, a register in the set (IXH,IXL,
IYH,IYL); also, RXA and RXB are used when
two different registers are specified in
the same instruction . |

SP The current Stack Pointer in use

SR Stack Pointer Relative addressing mode

STrC Source location or contents

SX - Short Index addressing mode

USP The User Stack Pointer

X Indexed addressing mode |
XX One of the 16-bit addressing registers

HL, IX, or 1IY; also XXA and XXB are used
when two different registers are speci-
fied in the same instruction

XY One of the 16-bit index registers IX or
1Y .

In the binary encoding of the inetruction, lower
case is used for the correspondlng encodxng of the
assembler syntax. |

Brackets ([and]) are used in the assembly
language syntax to indicate an optional field.
For example, the 16-bit addition instruction for
adding word data to ‘the HL reglster is described

| as:

L
..

ADDW [HL,]src

This format means the instruction can be written
as:

ADDW HL,src
or :
ADDW sfc |

- Assignment of a value is indicsted by the symbol

"{--", For exsmple,

dst <{-- dst + src

indicates that the sodrce data 1is added .to th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>