
Preliminary Technical Manual

*

%

ELEK TR O N IK -B A U TEILE
EscnenstraBe 2 * Postfach 1252 • 8028 Taufkirchen bei Munchen
Telefon (089) 61208-0 * Telex 522106 • Telefax (089) 61208-2

)

(

http://www.neumueller.com
fritz
Kommentar
Z280 manual missing pages repaired (5-100_5-101 are left)

last scanned version at:

http://oldcomputers.dyndns.org/public/pub/rechner/zilog/z280/manual/

fritz
Kommentar

Table o! Contents

Chapter 1. Z28Q Architectural Overview

1.1 Introduction
1.2 MPU Architectural Features

1.2.1
1. 2.2
1.2.3
1.2.4
1.2.5
1. 2.6
1.2.7
1.2.8

- 1.2.9
1. 2.10
1.2.11
1.2.12

System and User Modes
Address Spaces
Data T y p e s
Addressing Modes
Instruction Set
Exception Conditions
Memory Management
Cache Memory
Refresh............
On-Chip Peripherals
Mult iprocessor M o d e
Extended Instruction Facility

1.3 Benefits of the Architecture

1.4.1 High Throughput
1.4.2 Integration of System Functions
1.4.3 Operating System Support . . .
1.4.4 Code Density
1.4.5 Compiler Efficiency

V

1.4 Summary........................
/

1-1
1-2

1-2
1-2
1-2
1-3
1-3
1-3
1-3
1 r~4
1-4
1-4
1-4
1-4

1-5

1-5
1-5
1-5
1-5
1-5

1-6

Chapter 2. Address Spaces

2.1 Introduction...................... 2-1
2.2 CPU Register File.................................... 2-1
2.3 CPU Control Registers...2-2
2.4 Memory Address Spaces 2-3
2.5 I/O Address Space...2-4

Chapter 3. CPU Control Registers

3.1 Introduction...3-1
3.2 System Configuration Registers 3-1

«

3.2.1 Bus Timing and Initialization Register 3-1
3.2.2 Bus Timing and Control Register.......................... 3-2
3.2.3 Local Address Register 3-3
3.2.4 Cache Control Register................ .. .'............ 3-3

/

Table of Contents (Continued)

3.3 System Status Registers 3-4
*

3.3.1 Master Status Register 3-4
3.3.2 Interrupt Status Register 3-4
3.3.3 Interrupt/Trap Vector Table Pointer 3-5
3.3.4 I/O Page Register.. 3-5
3.3.5 Trap Control Register......................................3-5
3.3.6 System Stack Limit Register 3-6

Chapter 4. Addressing Nodes and Data Types

4.1 Introduction.. .. . 4-1
4.2 Addressing Mode Descriptions ;4-1

i "

" 4.2.1 Register (R, RX) 4-1
' 4.2.2 Immediate (I M) 4-1

4.2.3 Indirect Register (I R)4-2
4.2.4 Direct Address (DA)............ 4-2
. 4.2.5 Indexed (X) 4-3

' 4.2.6 Short Index (SX) .. 4-3
4.2.7 Relative Address (RA).............. 1'......... 4-4
4.2.8 Stack Pointer Relative (SR) 4-5
4.2.9 Base Index (BX) ...4-5

4.3 Data T y p e s .. 4-6 * •

Chapter 5. Instruction Set

5.1 Introduction................ 5-1
5.2 Processor F l a g s .. 5-1

• «

5.2.1 Carry Flag (C) 5-1
5.2.2 Add/Subtract Flag (N) 5-1
5.2.3 Parity/Overflow Flag (P/V)........................ . . . 5-2
5.2.4 Half-Carry Flag (H) 5-2

, 5.2.5 Zero Flag (Z) 5-2
5.2.6 Sign Flag (S) . .. 5-2
5.2.7 Condition C o d e s .. 5-2

\

5.3 Instruction Execution and Exceptions 5-3
\

» \

5.3.1 Instruction Execution and Interrupts.......... .. • • • • 5-3
5.3.2 Instruction Execution and T r a p s 5-3

i v

I

5.4 Instruction Set Functional Groups 5-4

5.4.1 8-bit Load Group 5-4
5.4.2 16-bit Load and Exchange Group.......................... 5-5
5.4.3 Block Transfer and Search Group 5-5
5.4.4 8-bit Arithmetic and Logic Group 5-6
5.4.5 16-bit Arithmetic Group 5-6
5.4.6 Bit Manipulation, Rotate and Shift Group 5-7
5.4.7 Program Control Group 5-7
5.4.8 Input/Output Instruction Group 5-9
5.4.9 CPU Control G r o u p 5-9
5.4.10 Extended Instruction Group 5-10

5.5 Notation and Binary Encoding 5-10
5.6 Instruction Set ...5-13

Chapter 6. Interrupts and Traps

6.1 Introduction...6-1
6.2 Interrupts........................6-1

6.2.1 Interrupt Mode 0 ...6-2
6.2.2 Interrupt Mode 1 ...6-2
6.2.3 Interrupt Mode 2 ...6-2
6.2.4 interrupt Mode 3 6-3

6.3 Traps
• ♦, / , i

i

6.3.1 Extended Instruction Trap
6.3.2 Privileged Instruction Trap . . .

> 6.3.3 System Call Trap
6.3.4 Access Violation Trap
6.3.5 System Stack Overflow Warning Trap
6.3.6 Division Exception Trap
6.3.7 Single-Step Trap
6.3.8 Breakpoint-on-Halt Trap

6-4

6-4
6-4
6-5
6-5
6-5
6-5
6-5
6-6

,6.4 Interrupt and Trap Handling 6-6

6.4.1 Interrupt Acknowledge 6-6
6.4.2 Status Saving................................6-7
6.4.3 Loading New Program Status 6-7
6.4.4 Executing the Service Routine........................ .. 6-9
6.4.5 Returning from a Service R o u t i n e 6-9

«

6.5 Interrupt/Trap Vector Table.......................................6-9
6.6 The Fatal Condition.. 6-11

/

V

/

- / •

\

*

i

V

V 1*

i

Table of Contents (Continued)

Chapter 7. Memory Management Uhit

7.1 Introduction.. 7-1
7.2 MMU Architecture.............................. 7-1
7.3 Page Description Registers.. 7-2
7.4 Address Translation .. 7-3

/ .

7.4.1 Address Translation without Program/Data Separation 7-3
7.4.2 Address Translation with Program/Data Separation 7-4

7.5 MMU Control Registers .. 7-5
7.6 Accessing Page Descriptor Registers 7-6

7.6.1 Descriptor Select P o r t 7-6
7.6.2 Block Move Port.. 7-6
7.6.3 Invalidation Port 7-6

* % ’

7.7 Instruction Aborts .. 7-7

Chapter 8. On-Chip Memory

8.1 Introduction........ '...8-1
8.2 Cache Memory Mode ' .. 8-1
8.3 Fixed-Address M o d e 8-4

Chapter 9. On-Chip Peripherals

9.1 Introduction.. 9-1
9.2 Clock Oscillator .. 9-1
9.3 Refresh Controller............................ 9-1
9.4 Counter/Timers.. 9-2

N

9.4.1 Counter/Timer Operating Modes................ '........... 9-3
9.4.2 Gates and Triggers...................................... 9-3
9.4.3 Terminal Count Condition 9-4
9.4.4 Counter/Timer Registers 9-4
9.4.5 Linking Counter/Timers 9-7
9.4.6 Counter/Timer Sequence of Events 9-7

\

9.5 DMA Channels.. 9-9

9.5.1 Types of DMA Operationis....................................9-10
9.5.2 DMA Transfer M o d e s 9-10
9.5.3 End-o f-Process.. 9-11
9.5.4 Priority Resolution .. 9-12
9.5.5 DMA Linking...9-12
9.5.6 DMA Registers...9-13
9.5.7 DMA Sequence of E v e n t s 9-15
9.5.8 DMA Programming: Linked D M A s 9-16
9.5.9 DMA Programming: DMAs Linked to U A R T 9-17

v i

s

9.6 U A R T ...9-17
% *

9.6.1 Transmitter Operation 9-17
9.6.2 Receiver Operation........................ 9-18
9.6.3 UART Registers.. 9-18
9.6.4 UART Operation.......... 9-21

9.7 UART Bootstrapping Option.. 9-21

s

Chapter 10. Multiprocessor Configurations

10.1 Introduction...10-1
10.2 Slave Processors 10-1
10.3 Tightly Coupled Multiple Processors 10-2

10.3.1 The Local Address Register 10-2
10.3.2 Bus Request Protocols 10-2
10.3.3 Examples of the Use of the Global Bus 10-4

• • • . ' . .

10.4 Loosely Coupled Multiple CPUs 10-6
10.5 Coprocessors and the Extended Processing Architecture 10-6

10.5.1 Extended Instructions 10-6
10.5.2 Extended Instruction Execution Sequence 10-7

Chapter 11. Reset 11-1

t ..
i

t..

Chapter 12. Z80 Bus External Interface

12.1 Introduction...12-1
12.2 Bus Operations....................................12-2
12.3 Pin Descriptions..............................12-3
12.4 Bus Configuration and Timing.................................... 12-4
12.5 Transactions..12-4

/

12.5.1 Memory Transactions 12-5
12.5.2 RETI Transactions 12-9

 ̂ 12.5.3 Halt and Refresh Transactions..........................12-9
12.5.4 1/0 Transactions .. 12-10
12.5.5 Interrupt Acknowledge Transactions 12-12
12.5.6 DMA Flyby Transactions 12-13

12.6 Requests.. 12-14

12.6.1 Interrupt Requests 12-14
12.6.2 Local Bus Requests.............. '....................... 12-15
12.6.3 Global Bus Requests.............................. 12-15

f

V 1 1

Table of Contents (Continued)

Chapter 13. Z-flUS External Interface -

13.1 Introduction.. 13-1
13.2 Bus Operations.. 13-2
13.3 Pin Descriptions 13-3

I

13.4 Bus Configuration and Timing...................................... 13-4
13.5 Transactions 13-4

13.5.1 Memory Transactions
13.5.2 Halt and Refresh Transactions
13.5.3 I/O Transactions
13.5.4 Interrupt Acknowledge Transactions

- 13.5.5 Extended Processing Unit (EPU) Transactions
13.5.6 DMA Flyby Transactions

. 4 ,

13.6 Requests........'....................... 13-18

• . • ■ '• ^

13.6.1 Interrupt Requests 13-19
13.6.2 Local Bus Requests..........13-19
13.6.3 Global Bus Requests.................................. .. 13-19

. 13-5

. 13-10

. 13-11

. 13-13

. 13-14

. 13-17

13

Appendix A. Z80/Z280 Coapatibility........‘......... A-1

Appendix B. Z280 MPU Instruction F o r a a t s B-1
* ' ■

Appendix C. Instructions in Alphabetic Order C-1

Appendix D. Instructions in Nuaeric Order D-1
I ■

Appendix E. Instruction T i a i n g E-1

Appendix F. Coapatible Peripheral Faailies F-1
. . ' >

Glossary G-1

Index 1-1

\

J

1

V I l l

LIST OF ILLUSTRATIONS AND TABLES

Figure
Number \

Page
Number

1-1.
2-1 .
2-2.
2-3.
2- 4 .
3- 1 .
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9 .
3-10.
5 - 1 .
6 - 1 .
6-2.
6 - 3.

*

7- 1 .
7-2.
7-3.
7- 4.
8 - 1 .
9-1 .
9-2 .
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11 .
9-12.
9-13.
9-14.
9-15.
9 - 16.
10 - 1 .
10-2 .
10-3.
10-4.
10-5.
10-6 .

Block D i agram...
Register File Organization................................
CPU Control Registers......................................
Numbering of Bits Within a B y t e...........
Formats, Multiple-Byte Data Elements in M e m o r y......
Bus Timing and Initialization Register................
Bus Timing and Control Register.........................
Local Address Register.....................................
Cache Control Register..................
Master Status Register.....................................
Interrupt Status Register.................................
Interrupt/ Trap Vector Table Pointer....................
1/0 Page Register...... "....................................
Trap Control Register......................................
System Stack Limit Register..............................
Flag Register................
Mode 2 Interrupt Processing..............................
Instruction Execution Sequence................
Format of Saved Status on System Stack
Due to a Mode 3 Interrupt.................................
Page Descriptor Register..................................
Address Translation Without Program/Data Separation.
Address Translation With Program/Data Separation....
MMU Master Control Register.......
Cache Organization..
Refresh Rate Register......................................
MPU Counter/Timer^ Block Diagram.........................
Counter Operation With Gate O n l y
Counter Operation With Trigger O n l y '........
Counter Operation With Gate and Trigger...............
Counter/Timer Configuration Register...................
Count er/T imer Command/St at us Register................ .
Modes of Operation.......................'..................
DMA Master Control Register..............................
Transaction Descriptor Register.........................
Source & Destination Address Registers Fo r m a t
General Format, Asynchronous Transmission.............
Byte Assembled by Receiver for 5-bit Character with
UART Configuration Register..............................
Transmitter Control/Status Register....................
Receiver Control/Status Register.......................
Multiprocessor Configurations.......
Local Address Register....................................
State Diagram for CPU Bus Request Protocol...........
Tightly Coupled Processors With Shared Global Memory

%

Tightly Coupled Processors Without Global Memory....
Z280 MPU as an 1/0 Processor.............................

.....1-1

.......... 2-1

.......... 2-3

..2-3

.......... 2-4

. 3-1

.......... 3-2

.......... 3-3

.......... 3-3

.......... 3-4

.......... 3-5

.......... 3-5

.......... 3-5

.......... 3-5

.......... 3-6

.......... 5-1

.....6-3

.......... 6-6
•

t

.......... 6-8

.......... 7-2

.......... 7-3

. 7-4

.......... 7-5

.......... 8-1

.......... 9-1

.......... 9-2

.......... 9-3

.9-4

.......... 9-4

.......... 9-5

.......... 9-6

...........9-11

.....9-13

...........9-13

......... 9-15

. 9-17
Parity...9-18
...........9-18
...........9-19
...........9-20
.......... 10-1
.......... 10-2
........... 10-3
........... 10-4
. 10-5
........... 10-5

Table of Contents (Continued)

>

10-7. EPU Connection in Z280 MPU S y s t e m 10-6
10-8. CPU-EPU Instruction Execution Sequence........................... 10-7
12-1. Z80 Bus Configuration (Input OPT tied to GND) '

a) Pin Functions... 12-1
b) Pin Assignments... 12-1

12-2. Memory Read Timing........... ..12-5
12-3. Memory Write Timing...12-6
12-4. Memory Read Timing W/One External Wait State.....................12-6
12-5. Memory Write Timing W/One External Wait S t a t e 12-7
12-6. Memory Read Timing W/One Internal Wait State......................12-7
12-7. RETI Read Timing.............*..12-8
12-8. Halt Timing...12-9
12-9. Memory Refresh Timing... 12-10
12-10. 1/0 Read Timing............... 12-11
12-11. 1/0 Write Timing.. 12-11
12-12. Interrupt Acknowledge Sequence................................ 12-12
12-13. On-Chip DMA Channel Flyby Memory Read Transaction............... 12-13
12-14. On-Chip DMA Channel Flyby Memory Write Transaction.............. 12-14
12- 15. Multiprocessor Mode Timing... 12-15
13- 1. Z-BUS Configuration (Input OPT tied to +5V or not connected)

■ a) Pin Functions.. 13-1
b) Pin Assignments..... 13-1

13-2. Memory Read Timing... 13-6
13-3. Memory Write Timing........... 13-7
13-4. Memory Read Timing With External Wait Cycle................13-7
13-5. Memory Write Timing With External Wait C y c l e13-8
13-6. Memory Read Timing With Internal Wait Cycle................... 13-8
13-7. Burst Memory Read Timing... 13-9
13-8. Halt Timing...................................13-10
13-9. Memory Refresh Timing.......... 13-11
13-10. 1/0 Read Timing......................... 13-12
13-11. 1/0 Write Timing................. 13-12
13-12. Interrupt Acknowledge Timing............................... 13-13
13-13. Memory to EPU Timing...13-14
13-14. EPU Write To Me m o r y............... 13-15
13-15. EPU To CPU Timing.. 13-16
13-16. PAUSE Timing......................... .•..................................13-16
13-17. On-Chip DMA Channel Flyby Memory Read Transaction............... 13-17
13-18. On-Chip DMA Channel Flyby Memory Write Transaction..............13-18
13-19. Multiprocessor Mode Timing... 13-19

• * . <

/

i
;

Jt ■ /

. V

N •
\

X

i

Table Page
Number Number
3-1 .
3-2.
3-3.
3-4.
3-5.
5-1 .
5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.
5-9.
5-10.
5-11 .
5- 12.
6- 1 .
6- 2 .
6-3.
6-4.
6 - 5.
7- 1 .
7-2.
7- 3.
8 - 1 .
8 - 2 .

8- 3.
9 - 1 .
9-2.
9-3.

9-4.

9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11 .
9-12 .

CS Field, Bus Timing & Initialization Register................... 3-1
LM Field, Bus Timing & Initialization Register................... 3-1
I/O Field of Bus Timing and Control Register.................... 3-2
HM Field of Bus Timing and Control Register.......................3-2
DC Field of Bus Timing and Control Register...................... 3-2
Condition C o d e s 5-3
8-Bit Load Group Instructions... 5-4
16-Bit Load and Exchange Group Instructions.......................5-5
Block Transfer and Search G r o u p5-5
8-Bit Arithmetic and Logic Group....................5-6
16-Bit Arithmetic Operation Instructions........................ 5-7
Bit Manipulation, Rotate and Shift Group...........................5-8
Program Control Group Instructions............................. 5-8
Input/Output Instruction Group Instructions..................... ..5-9
CPU Control G r o u p .. 5-10
Extended Instructions... 5-10
Encoding of 8-Bit Registers in Instruction Opcodes........ 5-11
Grouping of Maskable Interrupt Requests..............................6-1
Interrupt M o d e s ...6-4
Trap T y p e s ... 6-7
Interrupt Acknowledge Encoding for Z80 Bus P a r t s................ 6-7
Interrupt/Trap Vector Table Format........... 6-10
Page Descriptor Register Addresses................ 7-5
MMU Invalidation Port.. 7-6
1/0 Port Addresses for MMU Control Registers...................... 7-6
CPU Accesses to On-Chip Memory as Cache.....*...................... 8-2
On-Chip DMA Accesses (Both Flowthrough and Flyby) Effect
on On-Chip Memory as C a c h e ... 8-3
DMA/CPU Accesses to On-C'hip Memory as Fixed Memory Location. ..8-4
Encoding, IPA Field in C/T Configuration Register9-5
1/0 Addresses of Counter/Timer Registers........................... 9-7
Configuration and Command/Stat us Registers
for Linked Counter/Timers................ ...9-8
Encoding of DAD & SAD Fields in DMA Transaction
Descriptor Register.......... 9-13
Encoding of Type Field in Transaction Descriptor Register..... 9-14
Encoding of BRP Field in Transaction Descriptor Register....... 9-14
Encoding of ST Field in Transaction Descriptor Register•.9-14
1/0 Addresses of DMA Registers................ 9-15
CR Field of UART Configuration Register............ 9-19
BC Field of UART, Control Register........ .9-19
1/0 Addresses of UART Registers.......................................9-20
Reset Value of UART and DMA Registers
When Bootstrap Mpde Is Selected...........'................. ...9-21

i
i

/

i

\
t

7

x i

Table of Contents (Continued)

10-1. Bus Transactions Involved in Fetch of
Extended Instruction Template.....10-8

10- 2. Sequence of Transactions for Data Transfers
Between an EPU and Me m o r y... 10-9

11- 1. Effect of a Reset on Z280 CPU & MMU Registers................. 11-2
11-2. Effect of a Reset on Z280 On-Chip Peripheral Registers........ 11-3
13-1. ST Status Line Dec o d e............. 13-4

*

8-1. Format 1 Instruction Encodings...................................... B-2
B-2. Format 2 Instruction Encodings...................................... B-2
B-3. Format 3 Instruction Encodings...................................... B-2
B-4. Format 4 Instruction Encodings...................................... B-2
E-1. Instruction Execution Times.. E-2 ,
E-2. Extended Instruction Execution T i m e s E — 11
E-3. Interrupt, Trap, and Special Condition Execution Times........ E — 12
E-4. Instruction Fetch and Decode Timing.................. E-13
E - 5 . Data Read Timing.. E-14
E-6. Data Write Timing... E-14 ■
E-7. I/O Read and Write Timing... E-15
E-8. EPU Read and Write Timing...E-15
E-9. Interrupt Acknowledge Timing... E-15
E-10. Miscellaneous Transaction Timing........ E-16
F-1. Z8400 Peripheral Fa m i l y... F-1
F-2. Z8000/Z8500 Peripheral Family................................. . . : .F-1

/ ■ .• • • . , x ̂ . /

X 1 1

% *

Chapter 1.
Z280 Architectural Overview

»
i

1.1 INTRODUCTION

The Z280" microprocessor unit (MPU) features an
advanced 16-bit CPU that is object-code compatible
with the Z80® CPU. The Z280 microprocessor unit
includes memory management, peripherals, memory
refresh logic, cache memory, wait state
generators, and a clock oscillator on the same
integrated circuit as the CPU. The on-chip
peripheral devices include 4 DMA (Direct Memory
Access) channels, 3 counter/timers, and a UART
(Universal Asynchronous Receiver/Transmitter). A
block diagram of the Z280 MPU is shown in Figure
1-1. This chapter presents some of the features
of the Z280 MPU family, with detailed descriptions

of the various aspects of the processor provided
in succeeding chapters.

The Z280 MPU has a multiplexed address/data bus
for communication with external memory and
peripheral devices. Two different bus structures
are supported by the Z280: an 8-bit data bus that
uses Z80 Bus control signals, and a 16-bit data
bus that uses Z-BUS® bus control signals. Zilog's
Z80 and Z8300 families of peripherals are easily
interfaced to the Z80 Bus; Zilog's Z8000® family
of peripherals are easily interfaced to the Z-BUS.

I

2>0 COMPATIBLE

EXECUTION UNIT

REGISTER
RLE

5-STAGE PIPELINE

PROGRAM
COUNTER

INSTRUCTION/
DATA CACHE
OR MEMORY

ADDRESS 256
TAGS BYTES

LRU

INTERNAL BUS

4 J

POUR 16-BIT
DMA CHANNELS

24-BIT SOURCE
24-BIT DESTINATION

16-BIT COUNTER

CONTROL

DRAM
10-BIT

REFRESH
ADORESS

GENERATOR

BURST
MEMORY
CONTROL

EXTERNAL
BUS

INTERFACE

INTERRUPT
CONTROL

Z60BUS
(6-BIT) OR

Z-BUS
(16-BIT)

BUS SCALE
AND

WAIT STATE
GENERATOR

i l I i I i i l

T
f ‘

,4 3 • I I 1
• ' f^SET o s . SUSREO GREG .

. V f V V ♦ ▼
CT IN CTIO RBY DMASTB I5 P RxD TXD M BUSACK GACK A irA p

INTERNAL
CONTROL
SIGNALS

Af-Ais
ADfADis

AD0-AD7

*5AS
•RD/DS
•HALT/B/W
'WR/R/W
•HFSH/STo
•IORQ/ST1
*MI/ST?
•MREQ/STj

KiiR

iNT

OPT

CLK
WAIT

PAUSE

♦ Sign®! definition depends on OPT.
♦ EOP shares W/WTa
♦ SXCR shares W/CTIN0
+ GREG shares W/CT lOo.

Figure 1-1. Block Diagram

1-1

I

1.2 MPU ARCHITECTURAL FEATURES

The central processing unit of the Z280 MPU is a
binary-compatible extension of the Z80 CPU
architecture. High throughput rates for the Z280
CPU are achieved by a high clock rate, instruction
pipelining, and the use of on-chip cache memory.
The internal CPU clock can be scaled down to
provide for slower speed bus transaction timing.
A programmable refresh mechanism for dynamic RAMs
and a clock oscillator are provided on-chip.

/

v

1.2.1 System and User Modes

Two modes of CPU operation, system and user, are
provided to facilitate operating system design.
In system mode, all of the instructions can be
executed and all of the CPU registers can be
accessed. This mode is intended for use by
programs performing operating system functions.
In user mode, certain instructions that affect the
state of the machine cannot be executed and the
control registers in the CPU are inaccessible. In
general, user mode is intended for use by
applications programs. This separation of CPU
resources promotes the integrity of the system,
since programs executing in user mode cannot
access those aspects of the CPU that deal with
time-dependent or system-interface events.

. . • %, V

The register structure has been extended to
include separate Stack Pointer registers, one for
• system-mode stack and one for a user-mode
stack. The system-mode stack is used for saving
program status on the occurrence of an interrupt
or trap condition, thereby ensuring that the user
stack is free of system information. The
isolation of the system stack from user-mode
programs further promotes system integrity.

« • •
-, •. , i

\ . •

1.2.2 Address Spaces

Addressing spaces in the Z280 CPU include the CPU
register space, the CPU control register space,
the memory address space, and the I/O address
space. The CPU register file is identical to the
Z80 register set, with the exception of the
separate system- and user-mode Stack Pointers.
The A register acts as an 8-bit accumulator; the
HL register is the 16-bit accumulator. These are

supplemented by four other 8-bit registers (8, C,
D, E) and two other 16-bit registers (IX, IY);
the 8-bit registers can be paired for 16-bit
operation, and each 16-bit register can be treated
as two 8-bit registers. The Flag register (F)
contains information about the result of the last
operation. The A, F, B, C, D, E, H, and L
registers are replicated in an auxiliary bank of
registers. These auxiliary registers can be
exchanged with the primary register bank for fast
context switching.

Several CPU control registers determine the
operation of the Z280 MPU. For example, the
contents of control registers determine the CPU
operating mode, which interrupts are enabled, and
the bus transaction timing. The control registers
are accessible in system-mode operation only.

The Z280 CPU's logical memory address space is the
same as that of the Z80 CPU: 16-bit addresses are
used to reference up to 64K bytes of memory.
However, the on-chip Memory Management Unit (MMU)
extends the 16-bit logical memory address to a
24-bit physical memory address. Two separate
logical address spaces, one for system mode and
one for user mode, are supported by the CPU and
MMU. Optionally, the MMU can be programmed to
distinguish between instruction fetches and data
accesses; thus, the Z280 CPU can have up to four
memory address spaces: system-mode program,
system-mode data, user-mode program, and user-mode
data. The logical address space is divided into
pages to facilitate controlled sharing of program
or data among separate processes.

The Z280 CPU architecture also distinguishes
between the memory and I/O address spaces and,
therefore, requires specific I/O instructions.
I/O addresses in the Z280 CPU are 24 bits long,
with the upper 8 bits provided by an I/O page
register in the CPU.

t
< * .

\

1.2.3 Data Types

Many data types are supported by the Z280 CPU
. architecture. The basic data type is the 8-bit
byte, which is also the basic addressable memory
element. The architecture also supports opera­
tions on bits, BCD digits, 2-byte words, and byte
strings.

1-2

The operand addressing mode is the method by which
a data operand's location is specified. The Z280
CPU supports nine addressing modes, including the
five modes available on the Z80 CPU. The
addressing modes of the Z280 CPU are:

• Register
•. Immediate .
• Indirect Register
• Direct Address

A

• Indexed (with a 16-bit displacement)
• Short Index (with an 8-bit displacement)
• Program Counter (PC) Relative
• Stack Pointer (SP) Relative ,
• Base Index

. - • - . , *

All addressing modes are available on the 8-bit
load, arithmetic, and logical instructions; the
8-bit shift, rotate, and bit manipulation
instructions are limited to the Register, Indirect
Register, and Short Index addressing modes. The
16-bit loads on the addressing registers support
all addressing modes except Short Index, while
other 16-bit operations are limited to the
Register, Immediate, Indirect Register, Index,
Direct Address, and PC Relative addressing modes.

1.2.5 Instruction Set
, '. . t

t
The Z280 CPU instruction set is an expansion of i
the Z80 instruction set; the enhancements include
support for additional addressing modes for the
Z80 instructions as well as the addition of new
instructions. The Z280 CPU instruction set
provides a full complement of 8- and 16-bit
arithmetic operations, including signed and
unsigned multiplication and division. Additional
8-bit computational instructions support logical
and decimal operations. Bit manipulation, rotate,
and shift instructions round out the data
manipulation capabilities of the Z280 CPU. The
Jump, Call, and Return instructions have both
conditional and unconditional versions; Relative ,
addressing is provided for the Jump and Call
instructions to support position-independent
programs. Block move, search, and I/O
instructions provide powerful data movement
capabilities. In addition, special instructions
have been included to facilitate multitasking,
multiple processor configurations, and typical
high-level language and operating system
functions.

1.2.4 Addressing Modes

The Z280 MPU supports three types of exceptions
(conditions that alter the normal flow of program
execution): interrupts, traps, and resets.

1 - . ' ■ ■ ■ -. . : ■

Interrupts are asynchronous events typically
triggered by peripherals requiring attention. The
Z280 MPU interrupt structure has been signi­
ficantly enhanced by increasing the number of
interrupt request lines and by adding an efficient

• means for handling nested interrupts. There are
four modes for handling interrupts:

• 8080 compatible, in which the interrupting
device provides the first instruction of the
interrupt routine.

• Dedicated interrupts, in which the CPU jumps to
a dedicated address when an interrupt occurs.

• Vectored interrupt mode, in which the
. interrupting peripheral provides a vector into
a table of jump addresses.

• Enhanced vectored interrupt mode, wherein the
CPU handles traps and multiple interrupt
sources, saving control information as well as
the Program Counter when an interrupt occurs.

The first three modes are compatible with the Z80
CPU interrupt modes; the fourth mode provides more
flexibility, with support for nested interrupts

l

and a sophisticated vectoring scheme. .

Traps are synchronous events that trigger a
special CPU response when certain conditions occur
during instruction execution. The Z280 CPU
supports a sophisticated complement of traps
including Division Exception, System Call,
Privileged Instruction, Extended Instruction,
Single-Step, Breakpoint-on-Halt, Memory Access
Violation, and System Stack Overflow Warning
traps.

, •

Hardware resets occur when the RESET line is
activated and override all other conditions. A
reset causes certain CPU control registers to be
initialized.

« •

1.2.7 Memory Management

Memory management consists primarily of dynamic
relocation, protection, and sharing of memory.

1.2.6 Exception Conditions

1-3

/

Proper memory management can provide a logical
structure to the memory space that is independent
of the actual physical location of data, protect
the user from inadvertent mistakes (such as trying
to execute data), prevent unauthorized accesses to
memory, and protect the operating system from
disruption by users.

The 16-bit addresses manipulated by the pro­
grammer, used by instructions, and output by the
CPU are called logical addresses. The on-chip
Memory Management Unit (MMU) transforms the
logical addresses into the corresponding 24-bit
physical addresses required for accessing memory.
This address transformation process is called
relocation, and makes user software independent of
physical memory. Thus, the user is freed from
specifying where information is actually located
in physical memory.

Status information generated by the CPU allows the
MMU to monitor the intended use of each memory
access. Illegal types of accesses, such as writes
to read-only memory, can be suppressed; thus,
areas of memory can be protected from unintended
or unwanted modes of use. Also, the MMU records
which memory areas have been modified and can
inhibit copies of data from being retained in the
on-chip cache.

• '

• .

When a memory access violation is detected by the
MMU, a trap condition is generated in the CPU and
execution of the current instruction is auto­
matically aborted. This mechanism facilitates the
easy implementation of virtual memory systems
based on the Z280 MPU.

• - . . . »

1.2.8 Cache Memory

Cache memories are small high-speed buffers
situated between the processor and main memory.
For each memory access, control logic checks to
see if the data at that memory location is
currently stored in the cache. If so, the access
is made to the high-speed cache; if not, the
access is made to main memory, and the cache
itself might be updated. Thus, use of a cache
leads to increased performance with fewer memory
transactions on the system bus.

The Z280 MPU includes on-chip memory that can be
used as a cache for programs, data, or both.
Cache operations, including updating, are
performed automatically and are completely trans­
parent to the user. Optionally, this on-chip
memory can be dedicated to a set of memory
locations that are specified under program
control, instead of being used as a cache.

1.2.9 Refresh

The Z280 MPU has an internal mechanism for
refreshing dynamic memory. This mechanism can be
enabled or disabled under program control. If
enabled, memory refresh operations are performed
periodically at a rate determined by the contents
of a refresh rate register. A 10-bit refresh
address is generated for each refresh operation.

«

1.2.10 On-Chip Peripherals

Several programmable peripheral devices are
included on-chip in the Z280 MPUs: four DMA
channels, three 16-bit counter/timers, and a
UART. Optionally, one of the DMA channels can be
used with the UART as a bootstrap loader for the
Z280 MPU's memory after a reset.

• *
, . ’ I

1.2.11 Multiprocessor Mode

A special mode of operation allows the Z280 MPU to
operate in environments that have a global bus,
wherein the Z280 MPU is not the bus master of the
global bus. A set of memory addresses (determined
under program control) is dedicated to a local
bus, which is controlled by the Z280 MPU, and
another set of addresses is used for the global
bus. The Z280 MPU is required to make a bus
request and receive an acknowledgement before
making a memory access to an address on the global
bus. This mode of operation facilitates use of
the Z280 MPU in multiple-processor configura­
tions. For example, a Z280 MPU could be used as
an I/O processor in a Z80000-, Z8000-, or
Z280-based system.

V ' ' * .
1.2.12 Extended Instruction Facility

*

The Z280 MPU architecture has a mechanism for
extending the basic instruction set through the

- use of external devices called Extended Processing
Units (EPUs). Special opcodes have been set'aside
to implement this feature. When the Z280 MPU

t

encounters an instruction with one of these
opcodes, it performs any indicated address calcu­
lations and data transfers; otherwise, it treats
the "extended instruction" as if it were executed
by the EPU.

If an EPU is not present, the Z280 MPU can be
programmed to trap when an extended instruction is
encountered so that system software can emulate
the EPU's activity.

/

1-4

1.3 BENEFITS OF THE ARCHITECTURE

The features of the Z280 MPU architecture provide
several significant benefits, including increased
program throughput, increased integration of
system functions, support for operating systems,
and improvements in compiler efficiency and code
density.

1.3.1 High Throughput
t-

Very high throughput rates can be achieved with
the Z280 MPU, due to the cache memory, instruction
pipelining, and high clock rates achievable with
this processor. The CPU clock rate can be scaled
down to provide the bus clock rate, allowing the
designer to use slower, less-expensive memory and
I/O devices. Use of the on-chip cache memory
further increases throughput by minimizing the
number of accesses to the slower, off-chip memory
devices. The high code density achievable with
the Z280 CPU's expanded instruction set also
contributes to program throughput, since fewer
instructions are needed to accomplish a given
task.

1.3.2 Integration of Systeai Functions
/

Besides a powerful CPU, the Z280 MPU includes
many on-chip devices that previously had to be
implemented in logic external to the micro­
processor chip. These devices include a clock
oscillator, memory refresh logic, wait state
generators, the MMU, cache memory, DMA channels,
counter/timers, and a UART. Integration of all
these functions onto a single chip results in a
reduced parts count in a system design, accom­
panied by a resulting reduction in design and
debug time, power requirements, and printed
circuit board space. This increased level of
integration also contributes to system throughput,
since the on-chip devices can be accessed quickly
without the need of an external bus transaction.

1.3.3 Operating System Support

Several of the Z280 MPU's architectural features
facilitate the implementation of multitasking
operating systems for Z280-based systems.

The inclusion of user and system operating modes
improves operating system organization. User-mode
programs are automatically inhibited from per­
forming operating-system type functions. System­
mode memory can be separated from user-mode memory
and separate stacks can be maintained for system­
mode and user-mode operations. The System Call

instruction and the trap mechanism provide a
controlled means of accessing operating system
functions during user-mode execution.

The interrupt- and trap-handling mechanisms are
well suited for operating system implementations.
Several levels of interrupts are provided,
allowing for separate control of various peripher­
al devices (both on and off the chip). A new
interrupt mode is provided, wherein status infor­
mation about the currently executing task is saved
on the stack and new program status information
for the service routine is automatically loaded
from a special memory area. Traps result in the
same type of program status saving. In both
cases, status is always saved on the system stack,
leaving the user stack undisturbed.

Allocation of resources within the operating
system can be accomplished using a special Test
and Set instruction. Other instructions, such as
the Purge Cache instruction, are provided to aid
in task switching and other operating system
chores.

• (•

The on-chip MMU supports a multitasking environ­
ment by providing both a means of quickly
allocating physical memory to tasks as they are
executed on the system and protection mechanisms

*

to enforce proper memory usage*
* • *

' * - * * ; ? *

• i
1.3.4 Code Density

4 ' • • ~ *

Code density affects both processor speed and
memory utilization. Code compaction savfes memory
space and improves processor speed by reducing the
number of instructions that must be fetched and
decoded. The largest reduction in program size
results from the powerful instruction set, where
instructions such as Multiply and Divide help
substantially reduce the number of instructions
required to complete a task.

The efficiency of the instruction set is enhanced
by the addition of new addressing modes. For
example, all nine addressing modes are available
for all the 8-bit load, arithmetic, and logical

' instructions.

1.3.5 Compiler Efficiency

For microprocessor users, the transition from
assembly language to high-level languages allows
greater freedom from architectural dependency and
improves ease of programming. For the Z280 MPUs,
high-level language support is provided through
the inclusion of features designed to minimize
typical compilation and code-generation problems.

1-5

Among these features is the variety and the power
of the Z280 instruction set, allowing the Z280 CPU

' to easily handle a large amount and variety of
data types. The Z280 CPU's ability to manipulate
many different data types aids in compiler
efficiency; since data structures are high-level
constructs frequently used in programming,
processing performance is enhanced by providing
efficient mechanisms for manipulating them.

Examples of commonly used data structures include
arrays, strings, and stacks. Arrays are supported
in the Z280 CPU by the Indirect Register, Index,
and Base Index addressing modes. Strings are
supported by those same addressing modes and the
Block Move and Compare instructions; since
compilers and assemblers often must manipulate
character strings, the Block Move and Block
Compare instructions can result in dramatic speed
improvements over software simulations of those
tasks. Nuneric strings of BCD data can be
manipulated using the Decimal Adjust and Rotate
Digit instructions. Stacks are supported by the
Push and Pop instructions and the Stack Pointer
Relative, Index, and Base Index addressing modes; 1
the Stack Pointer Relative addressing mode is

especially useful for accessing parameters and
local variables stored on the stack.

1.4 SUMMARY

The Z280 MPU is a high-performance 16-bit micro­
processor, available with 8- and 16-bit external
bus interfaces. Code-compatible with the Z80 CPU,
the Z280 MPU architecture has been expanded to
include features such as multiple memory address
spaces, efficient handling of nested interrupts,
system and user operating modes, and support for
multiprocessor configurations. Additional
functions such as memory management, clock
generation, wait state generation, and cache
memory are included on-chip, as well as a number
of peripheral devices. The benefits of this
architecture— including high throughput rates, a
high level of system integration, operating system
support, code density, and compiler efficiency—
greatly enhance the power and versatility of the
Z280 MPU. Thus, the Z280 MPU provides both a
growth path for existing Z80-based designs and a
high-performance processor for future
applications.

%

1-6

r

Chapter 2.
Address Spaces

2.1 INTRODUCTION 2 .2 CPU REGISTER SPACE

The Z280 MPU supports four address spaces corre­
sponding to the different types of locations that
can be addressed, the method by which the logical
addresses are formed, and the translation mecha­
nisms used to map the logical address into
physical locations. These four address spaces
are s 0 • ■

• CPU register space. This consists of the
addresses of all registers in the CPU register
file.

• CPU control register space. This consists of
the addresses of all registers in the CPU
control register file.

• Neaory address space. This consists of the
addresses of all locations in the main memory.

ti

e I/O address space. This consists of the
addresses of all I/O ports through which
peripheral devices are accessed, including
on-chip peripherals and MMU registers.

The Z280 CPU register file is illustrated in
Figure 2-1. The primary register file, consisting
of the A, F, B, C, D, E, H, and L registers, is
augmented by an auxiliary file containing
duplicates of those registers. Only one set
(either the primary or auxiliary file) can be used
at any one time. Special exchange instructions
are provided for switching between the primary and
auxiliary registers.

_ »

The CPU register file is divided into five groups
of registers (an apostrophe indicates a register
in the auxiliary file):

• Flag and accunulator registers (F, A, F', A')
• Byte/word registers (B, C, D, E, H, L, B', C',

D \ E', H', L')
• Index registers (IX, IY)
• Stack Pointers (SSP, USP)
• Program Counter, Interrupt register, and

Refresh register (PC, I, R)

PRIMARY PILE AUXILIARY PILE
• . I

A ACCUMULATOR F FLAG REGISTER A' ACCUMULATOR I F' FLAG REGISTER

B GENERAL PURPOSE C GENERAL PURPOSE B' GENERAL PURPOSE C' GENERAL PURPOSE

D GENERAL PURPOSE E GENERAL PURPOSE D’ GENERAL PURPOSE E' GENERAL PURPOSE

H GENERAL PURPOSE L GENERAL PURPOSE
\

H' GENERAL PURPOSE l ’ GENERAL PURPOSE

f«W--------------------8 BITS-------------------- H

1 INTERRUPT VECTOR 'a

IX INDEX 1

__________________________________ 1

REGISTER

IY INDEX REGISTER

__________ ________________________1__________________________________

PC PROGRAM COUNTER

SP STACK POINTER
USER (USP)

SYSTEM (SSP)

NOTE: A is the 6-bit accumulator.
HL is the 16-bit accumulator.

h* 16 BITS H

Figure 2-1. Register File Organization

2-1

The explicit or implicit register specified by an
instruction is mapped into the CPU register file
based on the state of three control bits. One of
the three control bits is used to map the flag and
accumulator registers, selecting either F, A or
F', A' whenever the instruction specifies the flag
register or the accumulator. Another control bit
is used to map the byte/word registers, selecting
the B, C, 0, E, H, L registers or the B', C', D',
E', H', L' registers. These two control bits are
changed by the Exchange Flag and Accumulator and
the Exchange Byte/Word Registers instructions,
respectively. At any time the program can sense
the state of these control bits by special jump
instructions. The third control bit, the
User/System control bit in the Master Status
register, specifies whether the System Stack
Pointer register or the User Stack Pointer
register is selected whenever an instruction
specifies the Stack Pointer register. In
addition, the User Stack Pointer register also has
an address in the CPU control register space via a
special Load Control instruction.

Register addresses are either specified explicitly
in the instruction or are implied by the semantics
of the instruction.

The flag registers (F, F') contain eight status
flags. Four can be individually used for control
of program branching, two are used to support
decimal arithmetic, and two are reserved (see
section 5-2). The accumulator (A) is the implied
destination (i.e., where the result is stored) for
the 8-bit arithmetic and logical instructions.
Two sets of flag and accumulator registers exist
in the Z280 CPU, with only one set accessible as
the flag register and the accumulator at any one
time. An exchange instruction allows switching to
the alternate flag register and accumulator.

The byte/word registers can be accessed either as
8-bit byte registers or 16-bit word registers.
Bits within these registers can also be accessed
individually. For 16-bit accesses, the registers
are paired B with C, D with E, and H with L. Two
sets of byte/word registers exist in the Z280 CPU,
although only one set is used as the current
byte/word registers; the other set is accessible
as the alternate group of byte/word registers via
an exchange instruction.

V

The index registers IX and IY can be accessed as
16-bit registers or their upper and lower bytes
(IXH, IXL, IYH, and IYL) can be individually
accessed.

The Z280 CPU has two hardware Stack Pointers, one
dedicated to system mode operation and one to user
mode operation. The System Stack Pointer (SSP) is
used for saving information when an interrupt or
trap occurs and for supporting subroutine calls
and returns in system mode. The User Stack
Pointer (USP) is used for supporting subroutine
calls and returns in user mode.

The Program Counter is used to sequence through
instructions in the currently executing program
and for generating relative addresses. The Inter­
rupt register is used in interrupt mode 2 to
generate a 16-bit logical address from an 8-bit
vector returned by a peripheral during an inter­
rupt acknowledge. The Refresh register is used by
the Z80 CPU to indicate the current refresh
address, but does not perform this function in the
Z280 CPU; instead, it is another 8-hit register
available for the programmer.

2.3 CPU CONTROL REGISTER SPACE

The Z280 CPU status and control registers govern
the operation of the CPU. They are accessible
only by the privileged Load Control (LDCTL)
instruction. :

, t

Control register addresses are specified by the
contents of the C register. No translation is
performed in mapping this 8-bit logical address
into the control register file location.

The Z280 CPU control registers are the Bus Timing
and Initialization register, the Bus Timing and
Control register, the Master Status register, the
Interrupt/Trap Vector Table Pointer, the I/O Page
register, the System Stack Limit register, the
Trap Control register, the Interrupt Status
register, the Cache Control register, and the
Local Address register (Figure 2-2). The CPU
control registers are described in detail in
Chapter 3.

i •

2-2

CONTROL
REGISTERS \

r

SYSTEM STATUS 7
REGISTERS \

[

r

[BUS TIMING AND CONTROL

[BUS TIMING AND INITIALIZATION

LOCAL ADDRESS

CACHE CONTROL

MASTER STATUS

INTERRUPT STATUS

INTERRUPT /TRAP VECTOR TABLE POINTER

[I/O PAGE

[TRAP CONTROL

SYSTEM STACK LIMIT

]

]
]

. *

]

Figure 2-2. CPU Control Registers

2.4 MEMORY ADDRESS SPACES

Two memory address spaces, one for system and one
for user mode operation, are supported by the Z280
MPU. They are selected by the User/System mode
control bit in the Master Status register, which
governs the selection of page descriptor registers
in the MMU during address translation.

Each address space can be viewed as a string of
64K bytes numbered consecutively in ascending
order. The 8-bit byte is the basic addressable
element in the Z280 MPU memory address spaces.
However, there are other addressable data ele­
ments: bits, 2-byte words, byte strings, and
multiple-byte EPU operands.

• •
t

The size of the data element being addressed
depends on the instruction being executed. A bit
can be addressed by specifying a byte and a bit
within that byte. Bits are numbered from right to
left, with the least significant bit being bit 0,
as illustrated in Figure 2-3.

7 0

Figure 2-3. Numbering of Bits within a Byte

The address of a multiple-byte entity is the same
as the address of the byte with the lowest memory
address within the entity. Multiple-byte entities
can be stored beginning with either even or odd
memory addresses. A word (2-byte entity) is
aligned if its address is even; otherwise it is
unaligned. Multiple bus transactions, which may
be required to access multiple-byte entities, can
be minimized if alignment is maintained.

The formats of multiple byte data types in memory
are given in Figure 2-4.

Note that when a word is stored in memory, the
least significant byte precedes the most
significant byte of the word, as in the Z80 CPU
architecture.

#.

The 16-bit logical addresses generated by a
program can be translated into 24-bit physical
addresses by the on-chip MMU. When the
translation mechanism is disabled, the 24-bit
physical address consists of the logical address
for bits Aq-A-|5 and zeros for A-|6-A23-

2-3

60-bit floating-point (EPU instruction only) at address n: 16-bit word at address n:

f sign,E10-4 address n least significant byte address n
E3-0, F51-48 address n + 1 most significant byte address n + 1
F47-40 address n + 2 < -------| byte------->

F39-32
F31-24

address n + 3 32-bit integer (EPU instruction only) at address n:
aridmsR n + 4

F23-16 address n + 5 B31-24 (most significant byte) address n

F15-8 address n + 6 B23-16 address n + 1
.. F7-0 address n + 7 B15-8 address n + 2

<--1 byte -->
t

B7-0 (least significant byte) address n + 3

80-bit floating-point (EPU instructions only) at address n:
< ------------ -| byte — ------->

sign,E14-8
E7-0

64-bit integer (EPU instruction only) at address n:
aririmss n
address n + 1 B63-56 (most significant byte) address n 1

F63-56 address n + 2 B55-48 • address n + 1
F55-48 address n + 3 B47-40 • address n + 2

F47-40 address n + 4 B39-32 address n + 3

F39-32 address n + 5 B31-24 . • ■ address n -1- 4
F31-24 address n + 6 B23-16 1 address n + 5
F23-16 address n + 7 B15-8 address n + 6
F15-8 address n + 8 B7-0 (least significant byte) address n + 7
F7-0 address n + 9 < ------------ 1 byte — ------- >

BCD digit strings (EPU instruction only) at address n:
(up to 10 bytes in length; the illustration is for the
maximum length string)

sign,D18 address n
D17.D16 address n + 1
D15.D14 address n + 2
D13.D12 address n + 3
D11.D10 address n + 4
D9.D8 address n + 5
D7,D6 address n + 6
D5,D4 address n + 7
D3.D2 address n + 8
D1.D0 address n + 9

32-bit floating-point (EPU instruction only) at address n:

sign,E7-1
E0.F22-16
F15-8
F7-0

I <--1 byte -->

address n
address n + 1
address n + 2
address n + 3

Figure 2-4. Formats of Multiple-Byte Data Elements in Memory

2.5 I/O ADDRESS SPACE
I

I/O addresses are generated only by I/O
instructions. The 8-bit logical port address
specified in the instruction appears on ADg-ADy;
this ia concatenated with the contents of the A
register on lines Ag-A 5̂ for Direct addressing
mode, or by the contents of the B register for
Indirect Register addressing mode or block 1/0
instructions. The contents of the I/O Page
register arp appended to this address on lines
^16"^23* Thus, the 24-bit I/O port address

consists of the 8-bit address specified in the
instruction, the contents of the A or B register,
and the contents of the I/O Page register.

An I/O read or write is always one transaction,
regardless of the bus size and the type of I/O
instruction. On-chip peripherals with word
registers are always accessed with word
instructions, regardless of the size of the
external bus.

2-4

Chapter 3.
CPU Control Registers

3.1 INTRODUCTION

Several CPU control and status registers specify
the operating mode of the Z280 MPU. There are two
types of CPU control registers: system
configuration registers and system status regis­
ters. The system configuration registers contain
information about the physical configuration of
the Z280-based system, such as bus timing infor­
mation. Typically, the system configuration
registers are loaded once during system initial­
ization and are not altered during subsequent
operations. The system status registers contain
information that may change during system
operation, such as the current I/O page. Access
to the CPU control registers is restricted to
system mode operation only, using the privileged
Load Control (LDCTL) instruction. Resets ini­
tialize the control registers so that a Z80 object

V .
program will execute successfully on the Z280
MPU. (Z80 programs do not affect these registers,
since the Load Control instruction is not part of
the Z80 CPU's instruction set.) Unused bits in
these registers should always be loaded with
zeros.

3.2 SYSTEM CONFIGURATION REGISTERS

There are four 8-bit system configuration regis­
ters: the Bus Timing and Initialization register,
the Bus Timing and Control register, the Local
Address register, and the Cache Control register.

Clock Scaling (CS) Field. This 2-bit field
governs the scaling of the CPU clock for
generation of bus timing cycles. The state of the
CS field determines the bus clock frequency for
all bus transactions, as per Table 3-1. This
field is initialized during a reset operation, as
described below, and cannot be modified via
software.

»

• • • • /

Table 3-1. CS Field of Bus Timing and Initialization Register

CS Field Bus Clock Frequency

00 . Bus clock frequency equals 1fc CPU clock frequency
(one bus clock cycle for every two CPU clock cycles)

01 Bus clock frequency equals CPU clock frequency
(one bus clock cycle for every one CPU clock cycle)

10 Bus clock frequency equals 1/4 CPU clock frequency
(one bus clock cycle for every four CPU clock •
cycles) 1 ,

11 Reserved >
* s

Low Neaory Wait Insertion (LN) Field. This 2-bit«
field specifies the number of automatic wait
states to insert in memory transactions to the
lower 8 megabytes of physical memory (that is, all
memory locations where bit 23 of the physical
address is a 0), as per Table 3-2. Additional
wait states can still be added to any given memory
transaction via control of the WAIT input.

3.2.1 Bus Timing and Initialization Register
v.

The Bus Timing and Initialization register
controls the scaling of the processor clock for
bus timing, the duration of bus transactions to
the lower half of physical memory, and the
enabling of the multiprocessor and bootstrap
modes. Figure 3-1 illustrates the bit fields in
this register.

7 0
i

BS MP 0 LM CS

Figure 3-1. Bus Timing and Initialization Register

Table 3-2. LM Field of Bus Timing and Initialization Register

LM Field
Number of Walt States for

Lower 8M Bytes of Memory

00 0
01 1
10 ' 2
11 8 - -

Multiprocessor Configuration Enable (M*) Bit.
This 1-bit field enables the multiprocessor mode
of operation, wherein the Z280 MPU is connected to

•* both a local and a global bus. Transactions to

3-1

r

addresses on the global bus require a special bus
request and acknowledgement before the bus trans­
action can occur. (See Chapter 10 for details
concerning this mode of operation.) Setting this
bit to 1 enables the multiprocessor mode, and
clearing this bit to 0 disables this mode.

Bootstrap Node Enable (BS) Bit. This 1-bit field
enables the bootstrap mode of operation. If the
bootstrap mode is selected during a reset oper­
ation, memory is automatically initialized via the
UART after the reset; the UART receiver and DMA
channel 0 are used to transfer 256 bytes of data
into the first 256 memory locations; execution
then begins from memory location 0. (See Chapter
9 for further details.) Setting this bit to 1
enables the bootstrap mode and clearing this bit
to 0 disables this mode. The BS bit can be set to
1 only during a reset operation, as described
below. Writing to this bit via a software command
has no effect. This bit is always a 1 when this
register is read.

Bits 4 and 7 of the Bus Timing and Initialization
register are reserved for special use by Zilog and
should always be loaded with a zero when writing
to this register. When this register is read,
bits 4 and 7 may return a 1.

* •* * *

The Bus Timing and Initialization register can be
initialized with either of two methods during a
reset operation. If the MPU's WAIT input is not
asserted during reset, this register is auto­
matically initialized to all zeros, thereby
specifying a bus clock frequency of one-half the
internal CPU clock, no automatic wait states
during transactions to the lower 8M bytes of
memory, and disabling of the multiprocessor and
bootstrap modes. If the WAIT input is asserted

4

during reset, the Bus Timing and Initialization
register is set to the contents of the AD0-AD7 bus
lines, as read during the reset operation (see
Chapter 12); this form of initialization is the
only way to specify the bootstrap mode. Once the
CS field has been loaded during reset, it cannot
be modified via software; however, the LM and MP
fields can be written using the LDCTL instruction.

3.2.2 Bus Tiaing and Control Register

I/O Wait Insertion (I/O) Field. This 2-bit field
specifies the number of automatic wait states (in
addition to the one wait state always present
during I/O transactions) to be inserted during
each I/O read or write transaction, as per Table
3-3. The specified number of wait states is also
added to the vector read portion of an interrupt
acknowledge cycle.

Table 3*3. I/O Field of Bus Timing and Control Register

Number of Wait States
I/O Field for I/O

00 . 0
.- 01 : .: 1

10 2
11 3

High Meaory Wait Insertion (HH) Field. This 2-bit
field specifies the number of automatic wait
states to be inserted during memory transactions
to the upper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1), as per Table 3-4.

Table 3-4. HM Field of Bus Timing and Control Register

HM Field

00
01
10
11

Number of Wait States for
Upper 8M Bytes of Memory

0
'■•• • 1 • '

2
3

Daisy Chain Timing (DC). This 2-bit field
determines the number of automatic wait states to
be inserted during interrupt acknowledge
transactions while the interrupt acknowledge daisy
chain is settling, as per Table 3-5. Normally,
2.5 bus clock cycles elapse between the assertion
of Address Strobe and the assertion of Data Strobe
during an interrupt acknowledge (for the Z-BUS)
or between the assertion of HT and the assertion
of I0RQ (for the Z80 Bus). The value of the DC
field determines if any additional clocks are to
be added between the Address Strobe and Data
Strobe (or FTT and 10RQ) assertions.

The 8-bit Bus Timing and Control register deter­
mines the timing of bus transactions to the upper
8M bytes of memory and to all 1/0 devices, and the
timing of interrupt acknowledge transactions.
Figure 3-2 indicates the format of this register.

r 0
1 *I DC 1 1 HM I/O I

Figure 3-2. Bus Timing and Control Register

Table 3-5. DC Field of Bus Timing and Control Register

Number of Wait States for
DC Field Interrupt Acknowledge

00 0
01 1
10 2
11 3

3-2

The contents of the Bus Timing and Control
register govern the number of automatic wait
states to be inserted during various bus trans­
actions. Additional wait states can be added to
any bus transaction via control of the WAlt
input.

The Bus Timing and Control register is set to 30H by a
reset. Bits 4 and 5 should always be written with 0.
When this register is read, bits 4 and 5 may return a

/

Hatch Enable bit (ME,,): If MEn is set to 1, then
the corresponding physical address bit An is
compared to base bit Bn to determine if the
address requires the use of the global bus. If
MEn is a zero, then any values for An and Bn
produce a match, signifying a local bus access.
If every MEn is cleared to 0, then all memory
transactions are performed on the local bus.

The Local Address register is cleared to all zeros
by a reset.

3.2.3 Local Address Register 1

The 8-bit Local Address register is used while in
multiprocessor mode to determine which memory
addresses are accessed via the local bus and which
memory addresses are accessed via the global bus.
If the multiprocessor mode is disabled (that is,
if there is a 0 in bit 5 of the Bus Timing and
Initialization register), the contents of the
Local Address register have no effect on MPU
operation.

If multiprocessor mode is enabled, the MPU auto­
matically uses the Local Address register during
each memory access to determine if the global bus
is required. The Local Address register consists
of a 4-bit match field and a 4-bit base field that
are compared to the upper four bits of the
physical memory address during memory trans­
actions. The 4-bit match field specifies which
bits of the physical memory address are of
interest; for those bit positions specified in
the match field, if all the corresponding address
bits match the Local Address register's base field
bits, then the bus transaction can proceed on the
local bus. If there is a mismatch in at least one
of the specified bit positions, then the global
bus is requested, and the transaction cannot
proceed until the global bus acknowledge signal is
asserted. (See Chapter 10 for further discussion
of the Multiprocessor mode.)

t

/s

The format of the Local Address register is
illustrated in Figure 3-3.

Ê23|ME22|E22IME21ME 20 B23 B22 B21 B20

Figure 3-3. Local Address Register

3.2.4 Cache Control Register
• k

The 8-bit Cache Control register controls the
operation of the on-chip memory. The contents of
the Cache Control register determine if the
on-chip memory is to be used as a cache or as
fixed memory locations; if used as a cache, the
cache can be enabled for instruction fetches only,
for data fetches only, or for both instruction and
data fetches. This register is also used to
determine if burst-mode memory transactions are
supported. (See Chapter 8 for further discussion
of the on-chip memory and Chapter 13 for a
description of the burst mode memory transaction.)

The Cache Control register contains five control
bits, as described below. The format for this
register is shown in Figure 3-4.

7 0
1 1 1Im/c I D LMB HMBl 0 0 0

Figure 3-4. Cache Control Register

•

Hemory/Cache (M/D Bit. While this bit is set to
1 , the on-chip memory is accessed as physical
memory with fixed memory addresses; the user can
programmably select the ranges of memory addresses
for which the on-chip memory will respond. While
this bit is cleared to 0 , the on-chip memory is
accessed associatively as a cache.

Cache Instruction Disable (I) Bit. While this bit
and the M/C bit are cleared to 0 , the on-chip
memory is used as a cache during instruction
fetches. While this bit is set to 1, instruction
fetches do not use the cache. If the M/C bit is a
1, the state of this bit is ignored.

Base bit (Bp): For each MEn that is set to 1, the
corresponding value of Bn must match the value of
address bit An in order for the local bus to be
used; otherwise, the transaction requires the use
of the global bus.

Cache Data Disable (D) Bit. While this bit and
the M/C bit are cleared to 0, the on-chip memory
is used as a cache during data fetches. While
this bit is set to 1, data fetches do not use the
cache. (The cache can be enabled for both

t

3-3

✓

instruction and data fetches by clearing both the
l and D bits.) if the H/C bit is a 1, the state
of this bit is ignored.

Low Meaory Burst Capability (LNB) Bit. This 1-bit
field specifies whether burst-mode memory
transactions will occur during memory transactions
to the lower 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 0). Setting this bit to 1 enables
burst-mode transactions; clearing this bit to 0
disables burst mode transactions.

High Memory Burst Capability (HNB) Bit. This
1-bit field specifies whether burst-mode memory
transactions will occur during memory transactions
to the upper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1). Setting this bit to 1 enables
burst-mode transactions; clearing this bit to 0
disables burst-mode transactions.

The Cache Control register is set to a 20^
(hexadecimal) by a reset, enabling the on-chip
memory for use as a cache for instruction fetches
only and disabling burst mode transactions. Bits
0, 1, and 2 of this register are not used.

• • *
, • •

* • • x

3.3 SYSTEM STATUS REGISTERS

There are six system status registers in the Z280
CPU: the Master Status register, Interrupt Status
register, Interrupt/Trap Vector Table Pointer, I/O
Page register, Trap Control register, and System
Stack Limit register.

3.3.1 Master Status Register

The 16-bit Master Status register (MSR) contains
status information about the currently executing
program. Typically, the MSR changes when a new
programming task is dispatched; it changes
automatically when an interrupt or trap occurs.
For all traps and for interrupts processed using
interrupt mode 3, the old value of the MSR is
saved on the system stack and a new MSR is loaded
along with the Program Counter to define the
service routine. (See Chapter 6 for a detailed
discussion of interrupt and trap processing).

The format of the Master Status register is shown
in Figure 3-5.

15 e
I 0 | U/S | 0 | BH | 0 j 0 |ssp| SS | 0 | E« | Es [E, | E3 \ B2 \ Ei | Ep |

Figure 3-5. Master Status Register

User/System (U/5) Bit. While this bit is cleared
to 0, the Z280 MPU is in the system mode of
operation; while set to 1, the MPU is in the user
mode of operation. The current operating mode
determines which Stack Pointer is in use and which
instructions can be executed; privileged
instructions can be executed only while in system
mode.

Breakpoint-on-Halt Enable (BH) Bit. While this
bit is set to 1, the CPU generates a breakpoint
trap whenever a Halt instruction is encountered;
while cleared to 0, the Halt instruction is
executed normally.

Single-Step Pending (SSP) Bit. The CPU checks
this bit prior to the start of an instruction
execution and generates a Single-Step trap if this
bit is set to 1. The Single-Step bit is
automatically copied into this field at the
completion of an instruction. This bit is
automatically cleared when a Single-Step, Division
Exception, Access Violation, Privileged
Instruction, or Breakpoint-on-Halt trap is
executed, so that the saved MSR has a 0 in this
bit position. (For these traps, the PC address of
the trapped instruction is saved for possible
re-execution.)

Single-Step (SS) Bit. This bit is the enable for
the single-step operating mode. While this bit is
set to 1, the CPU is in a single-step mode wherein
a Single-Step trap is generated for each
instruction; if cleared to 0, single-step mode is
disabled. ’

Interrupt Request Enable (En) Bit. There are
seven interrupt enable bits in the MSR, one for
each type of maskable interrupt source. The Z280
MPU's interrupt sources, including both the
external interrupt requests and the on-chip
peripherals, are grouped into seven levels of
interrupt requests. While bit En is set to 1,
interrupt requests from sources at level n are
accepted by the CPU; while En is cleared to 0,
interrupt requests from sources at level n are not
accepted.

The Master Status register is loaded with all
zeros by a reset. Bits 7, 10, 11, 13, and 15 of
the MSR always should be written with zeros.

3.3.2 Interrupt Status Register
1

The 16-bit Interrupt Status register indicates
which interrupt mode is in effect, which interrupt
requests are pending, and which interrupt requests
are to be vectored. Only the interrupt vector

3-4 I ✓

(

enable bits are writeable; all other bits in this
register are read-only status bits. The fields in
the Interrupt Status register are shown in Figure
3-6.

• t

15 0
•b U | (n m i 0 0 IM

i
0 JlPe IPs IP 4 | IP 3 | IP 2 •Pi

The contents of the Interrupt/Trap Vector Table
Pointer are unaffected by a reset and are
undefined after power-up. When this register is
read, bits 3,2,1 and 0 may return a 1.

t • • . .
• • •

3.3.4 I/O Page Register

Figure 3-6. Inteimpt Status Register

t

Interrupt Vector Enable (In) Bits. These four
bits indicate which of the four external interrupt
inputs are to be vectored. While In is set to 1,
interrupts on the Interrupt n line are vectored
when the CPU is in interrupt mode 3; while In is
cleared to 0 , that interrupt is not vectored.
These bits are ignored when not in interrupt mode
3.

The 8-bit I/O Page register determines the upper
eight bits of the 24-bit peripheral address output
during execution of an I/O transaction (Figure
3-8). I/O pages FEH and FFH are reserved for
on-chip peripheral addresses.

•*' *

l ** * « •

r o
A23|Aaj*2T^io|*i»Fi>}*iy|*i»|

Figure 3-8. I/O Page Register

Interrupt Node (IN) Field. This 2-bit field
indicates the current interrupt mode in effect,
with a value n in this field* denoting interrupt
mode n. This field can be changed by executing
the IM instruction.

The contents of the I/O Page register are
cleared to all zeros by a reset.

« '

3.3.5 Trap Control Register

Interrupt Request Pending. (IPn) Bits. When bit
IPn is a 1 , an interrupt request from a source at
level n is pending.

The 8-bit Trap Control register contains the
enables for the maskable traps. Figure 3-9
illustrates the format of this register.

On reset, the Interrupt Vector Enable bits are
cleared to all zeros, interrupt mode 0 is in
effect, and the Interrupt Pending bits reflect the
state of the interrupt requests. Bits 7, 10, and
11 of this register are not used.

7___________________

I 0 I 0 I 0 I o I 0~p"[

Figure 3-9. Trap Control Register

3.3.3 Interrupt/Trap Vector Table Pointer
t

The 16-bit Interrupt/Trap Vector Table Pointer
contains the twelve most significant bits of the
physical memory address of the start of the
Interrupt/Trap Vector Table. The Interrupt/Trap
Vector Table is a memory area that holds the
values that are loaded into the Master Status
register and Program Counter during trap and
interrupt processing under interrupt mode 3, as
described in Chapter 6 . The twelve low-order bits
of the 24-bit physical address are assumed to be
all zeros: thus, the Interrupt/Trap Vector Table
must start on a 4K byte boundary in physical
memory. The low-order four bits of the
Interrupt/Trap Vector Table Pointer must be all
zeros (Figure 3-7).

is___ o

Figure 3-7. Interrupt/Trap Vector Table Pointer

Inhibit User I/O (I) Bit. This bit determines
whether or not I/O instructions are privileged
instructions. While this bit is set to 1, all I/O
instructions are treated as privileged
instructions, and an attempt to execute an I/O
instruction while in user mode results in a
Privileged Instruction trap. While this bit is
cleared to 0, I/O instructions can be successfully
executed in user mode. I/O instructions can
always be executed in system mode, regardless of
the state of this bit.

I ‘ *

EPU Enable (E) Bit. This bit indicates whether or
>

not an Extended Processor Unit (EPU) is available
in the system for execution of extended in­
structions. If this bit is cleared to 0,
indicating that no EPUs are present, the CPU
generates an Extended Instruction trap whenever an
extended instruction is encountered. If this bit
is set to 1, the CPU performs whatever data
transfers are indicated by the extended in­
struction opcode, and assumes that the EPU is
present to execute the instruction.

3-3

System Stack Overflow Warning (S) Bit. This is
the enable bit for the System Stack Overflow
Warning trap. While it is set to 1, Stack
Overflow Warning traps can occur during a stack
access while in system mode, as determined by the
contents of the Stack Limit register. While this
bit is cleared to 0, Stack Overflow Warning traps
are disabled. This bit is automatically cleared
when a System Stack Overflow Warning trap is
generated.

The Trap Control register is cleared to all zeros'
by a reset, indicating that I/O instructions are
not privileged, EPUs are not present in the
system, and Stack Overflow Warning traps are
disabled. Bits 3 through 7 of this register are
not used.

3.3.6 System Stack Limit Register

The 16-bit System Stack Limit register determines
when a System Stack Overflow Warning trap is to be
generated. Pushes onto the system-mode stack
cause the 12 most significant bits of the logical
address of the System Stack Pointer to be compared
to the 12 most significant bits of this register;
a System Stack Overflow Warning trap is generated
if they match. The low-order four bits of this
register must be zeros (Figure 3-10). This
register has no effect on MPU operation if the
System Stack Overflow Warning enable bit in the
Trap Control register is cleared to 0.

*

15 0

A u A13 A12 A11 A10 A9 As a 7 A® As a 4 1 1 1

Figure 3-10. System Stack Limit Register

The contents of the System Stack Limit register
are cleared to zeros by a reset.

3-6

Chapter 4.
Addressing Modes and Data Types

4.1 INTRODUCTION

An instruction is a consecutive list of one or
more bytes in memory. Most instructions act upon
some data; the term operand refers to the data to
be operated upon. For Z280 CPU instructions,
operands can reside in CPU registers, memory
locations, or I/O ports. The methods used to
designate the location of the operands for an
instruction are called addressing modes. The Z280
CPU supports nine addressing modes: Register,
Immediate, Indirect Register, Direct Address,
Indexed, Short Index, Program Counter Relative
Address, Stack Pointer Relative, and Base Index.
A wide variety of data types can be accessed using
these addressing modes.

\ *

4.2 ADDRESSING MODE DESCRIPTIONS ,

INSTRUCTION REGISTER

| OPERATION | REGISTER OPERAND j
THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

V

The operand is always in the register address
space. The register length (byte or word) is
specified by the instruction opcode.

Example of R mode:

LD BC,HL ;load the contents of HL into BC

Before instruction execution: After instruction execution:

A 6 B 8

dcn 9 A 2 0

9 A 2 0 HL: 9 A 2 0

The following pages contain descriptions of the
addressing modes for the Z280 CPU. Each
description explains how the operand's location is
calculated, indicates which address spaces can be
accessed with that particular addressing mode, and
gives an example of an instruction using that
mode, illustrating the assembly language format
for the addressing mode. The examples using
memory addresses use logical memory addresses; if
the MMU is enabled, these logical addresses can be
translated to physical addresses before the
physical memory is accessed, but this process is
not discussed or illustrated here.

4.2.2 Immediate (IN) V ' •
• t *

When the Immediate addressing mode is used, the
data processed is in the instruction.

The Immediate addressing mode is the only mode
that does not indicate a register or memory
address as the source operand. • •

INSTRUCTION

OPERATION
»

OPERAND

THE OPERAND VALUE IS IN THE INSTRUCTION.

4.2.1 Register (R9 RX)
0

t

When this addressing mode is used, the instruction
processes data taken from one of the 8-bit
registers A, B, C, D, E, H, L, IXH, IXL, IYH, IYI,
or one of the 16-bit registers BC, DE, HL, IX, IY,
SP, or one of the special byte registers I or R.

Storing data in a register allows shorter
instructions and faster execution than occur with
instructions that access memory.

Because an immediate operand is part of the
instruction, it is always located in the program
memory address space. Immediate mode is often
used to initialize registers.

LD A,55H ;load hex 55 into the accumulator

Before instruction execution: After instruction execution:

A: 6 7 A: 5 5

4-1

4.2.3 Indirect Register (IR) 4.2.4 Direct Address (DA)

In the Indirect Register addressing mode, the
register specified in the instruction holds the
address of the operand. The data to be processed
is at the location specified by the HL register
for memory accesses or the C register for I/O and
control register space accesses. For the Load
Byte instruction, BC and DE can also be used in
addition to HL.

When the Direct Address addressing mode is used,
the data processed is at the location whose memory
or I/O port address is in the instruction.

INSTRUCTION
I DATA MEMORY

OPERATION OR I/O PORT

ADDRESS --------► ! OPERAND I

INSTRUCTION

DATA MEMORY,
I/O PORT, OR

REGISTER CONTROL REGISTER

| OPERATION REGISTER ADDRESS OPERAND

THE OPERANO VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION.

* •

Depending on the instruction, the operand
specified by DA mode is either in the I/O address
space (I/O instructions) or in the data memory
address space (all other instructions).

Depending on the instruction, the operand
specified by IR mode is located in either the I/O
address space (I/O instructions), control register
space (Load Control instruction), or data memory
-address space (all other instructions).

The Indirect Register mode can save space and
reduce execution time when consecutive locations
are referenced or one location is repeatedly
accessed. This mode can also be used to simulate
more complex addressing modes, since addresses can
be computed before the data is accessed.

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that is
loaded into the Program Counter.)

Example of DA mode:

LD BC,(5E22H) ;load BC with the data in
;address 5E22

Before instruction execution: After instruction execution:

LD A,(HL) ;load the accunulator with the data
;addressed by the contents of HL

BC: 6 7 8 9

Data memory:

Before instruction execution: After instruction execution:

A: 0 F A: 0 B

HL: 1 7 0 c HL: 1 7 0 C

5E22:

5E23:

0 1

0 3

Data memory:

170C: 0 B

BC: 0 3 0 1

4-2

4.2.5 Indexed (X)

For this addressing mode, the data processed is at
the location whose address is the address in the
instruction offset by the contents of HL, IX, or
IY.

The indexed address is computed by adding the
address specified in the instruction to a

twos-complement '• index" contained in the HL, IX or
IY register, also specified by the instruction.
Indexed addressing allows random access to tables
or other complex data structures where the address
of the base of the table is known, but the
particular element index must be computed by the
program.

INSTRUCTION REGISTER

OPERATION REGISTER — ► [INDEX | ---------

ADDRESS 3 >
DATA

MEMORY

| o p e r a n d "

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDRESS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

Operands specified by X mode are always in the
data memory address space.

Exanple of X node:

Before instruction execution: After instruction execution:

A: 2 3 A: 3 D

IX: 0 1 F E IX: 0 1 F E

LD A,(IX + 231AH) ;load into the accumulator
;the contents of the memory
;location whose address
;is 231AH + the value in IX

Data memory:

2518: 3 D

Address calculation:

231A
-1-01FE
2518

4.2.6 Short Index (SX)
l

i *

»

When the Short Index addressing mode is used, the
data processed is at the location whose address is
the contents of IX or IY offset by an 8-bit signed
displacement in the instruction. (Note that this
addressing mode was called "Indexed" in the Z80
CPU literature.)

The short indexed address is computed by adding
the 8-bit twos-complement signed displacement
specified in the instruction to the contents of
the IX or IY register, also specified by the
instruction. Short Index addressing allows random
access to tables or other complex data structures
where the address of the base of the table is
known, but the particular element index must be
computed by the program.

INSTRUCTION

OPERATION | REGISTER

DISPLACEMENT

REGISTER

ADDRESS

DATA
MEMORY

I OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE ADDRESS IN THE INSTRUCTION,
OFFSET BY THE CONTENTS OF THE REGISTER.

V

Operands specified by SX mode are always in the
data memory address space.

\

Exanple of SX mode:

LD A,(IX - 1) ;load into the accumulator the
;contents of the memory location
;whose address is one less than
;the contents of IX

Before instruction execution: After instruction execution:

A: 0 1 A: 3 D

IX: 2 0 3 A IX: 2 0 3 A

I
Data memory:

3 D2039:

4-3

Address calculation: FF encoding in the instruc­
tion is sign-extended before
the address calculation.

203A
+FFFF
2039

4.2.7 Program Chunter (PC) Relative Address (RA)

For Program Counter Relative Addressing mode, the
data processed is at the location whose address is
the contents of the Program Counter offset by an
8- or 16-bit displacement given in the
instruction.

This format implies that the assembler will
calculate the displacement from the current PC
value to the specified label. Alternatively,
slightly different syntaxes can be used for the RA
mode if the actual displacement from the
instruction using this mode is known. Thus, this
example can also be written in the following
manner:

LD A,<$ + 6> ;load the accunulator with the
;contents of the memory location
;whose address is six more than
;the address of the start of this
;LD instruction

t

or

The instruction specifies a twos-complement signed
displacement that is added to the Program Counter
to form the target address* Except for extended
instructions, the Program Counter value used is
the address of the first instruction following the
currently executing instruction. For extended
instructions, the address used to calculate the
displacement is the address of the template.

INSTRUCTION PC

1 OPERATION I ADDRESS | -----

1 DISPLACEMENT — *4

PROGRAM
MEMORY

OPERAND I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF PC OFFSET BY THE
DISPLACEMENT IN THE INSTRUCTION.

LD A,(PC + 2) ;load the accunulator with the
;contents of the memory location
;whose address is two more than
;the current PC, which now points
;to the next instruction

Because the Program Counter is advanced to point
to the next instruction when the address
calculation is performed, the constant that occurs
in the instruction is +2 .

• * »
4

1 - .

Before instruction execution: After instruction execution:

A: 2 3 A: 7 6

6CL 0 2 0 2 PC: 0 2 0 6

An operand specified by RA mode is always in the
program memory address space.

Program memory:

The Program Counter Relative Addressing mode is
used by certain program control instructions to
specify the address of the next instruction to be
executed (specifically, the result of the addition
of the Program Counter value and the displacement
is loaded into the Program Counter). Relative
addressing allows references forward or backward
from the current Program Counter value; it is used
for program control instructions such as Jumps and
for Loads that access constants in the program
address space.

0202:
0203:

0204:

0205:

0206:

0207:

LABEL: 0208:

F D

7 8

0 2

0 0

1 8

0 1

7 6

instruction

Address calculation:

Example of RA node:

LD A,<LABEL> ;load the accunulator with the
{contents of the memory location
;whose address is LABEL

0206
±__2
0208

l

y

4-4

4.2.8 Stack Pointer Relative (SR)

For the Stack Pointer Relative addressing mode,
the data processed is at the location whose
address is the contents of the Stack Pointer
offset by a 16-bit displacement in the
instruction.

Exaaple of SR node:

LD A,(SP +2) ;load into the accunulator
;the contents of the memory
;location whose address is

✓

;two more than the contents
;of SP • -

The instruction specifies a twos-complement
displacement that is added to the contents of the
Stack Pointer register to form the address. An
operand specified by SR mode is always in the data
memory address space.

Before instruction execution: After instruction execution:

A: 6 9 • A: F 3

SP: 8 2 0 0 SP: 8 2 0 0

INSTRUCTI0N SP

1 OPERATION 1 ADDRESS |—

1 DISPLACEMENT ►©—H
INSTRUCTION

MEMORY

OPERAND]

The SR addressing mode is used to specify data
items to be found in the stack such as parameters
passed to subroutines. The System Stack Pointer
or User Stack Pointer is selected depending on the
state of the User/System bit in the Master Status
register.

t

Data memory:

Top of stack 8200: ' A B

8201: 0 1

8202: F 3

8203: 2 8

Address calculation:

8200
♦____ 2
8202

*

4.2.9 Base Index (BX)

For the Base Index addressing mode, the data
processed is at the location whose address is the

contents of HL, IX, or IY, offset by the contents
of another of these three registers.

INSTRUCTION REGISTERS
DATA

MEMORY

WHOSE ADDRESS IS THE CONTENTS OF THE ONE REGISTER
OFFSET BY THE DISPLACEMENT IN THE SECOND REGISTER.

This mode allows access to memory locations whose
physical addresses are computed at run time and
are not fully known at assembly time. An operand
specified by BX mode is always in the data memory
address space.

Example of BX mode:

L0 A,(HL + IX) ;load into the accumulator the
;contents of the memory location
;whose address is the sum of the
{contents of the HL and IX
{register

Before instruction execution: After instruction execution:
\

A: B C A: A 2

HL: 1 5 0 2 HL: 1 5 0 2

IX: F F F E . IX: F F F F

Data memory:

1500: A 2

Address calculation:

1502
+FFFE \

I1500

4-5

4.3 OATA TYPES

Many data types are supported by the Z280 MPU
architecture; that is, many data types have a
hardware representation in a Z280 MPU system and
instructions that directly apply to them. The
Z280 MPU supports operations on bytes, words,
bits, BCD digits, and byte strings.

The basic data type is a byte, which is also the
basic addressable element in the register, memory,
and I/O address spaces. The 8-bit load,
arithmetic, logical, shift, and rotate
instructions operate on bytes in registers or
memory. Bytes can be treated as logical, signed
numeric, or unsigned numeric values.

*

Operations on two-byte words are also supported.
Sixteen-bit load and arithmetic instructions
operate on words in registers or memory; words
can be treated as signed or unsigned numeric
values. I/O reads and writes can be 8-bit or
16-bit operations. Sixteen-bit logical memory
addresses can be held and manipulated in 16-bit
registers.

* *

Bits are fully supported and addressed by number
within a byte (see Figure 2-2). Bits within byte
registers or byte memory locations can be tested,
set, or cleared.

Operations on binary-coded decimal (BCD) digits

are supported by the Decimal Adjust Accunulator
and Rotate Digit instructions. BCD digits are
stored in byte registers or memory locations, two
per byte. The Decimal Adjust Accumulator in­
struction is used after a binary addition or
subtraction of BCD numbers. The Rotate Digit
instructions are used to shift BCD digit strings
in memory.

Strings of up to 65,536 bytes can be manipulated
by the Z280 CPU's block move, block search, and
block I/O instructions. The block move
instructions allow strings of bytes in memory to
be moved from one location to another. Block
search instructions provide for scanning strings
of bytes in memory to locate a particular value.
The block I/O instructions allow strings of bytes
or words to be transferred between memory and a
peripheral device.

• t

Arrays are supported by the Indexed, Short Index,
and Base Index addressing modes. Stacks are
supported by those same modes and the Stack
Pointer Relative addressing mode, and by special
instructions such as Call, Return, Push, and Pop.
A special stack write warning feature aids in the
allocation of system stack memory space.

Strings of up to 16 bytes can be transferred
between memory and an Extended Processing Unit
(EPU) during execution of an extended instruction.

¥

4 -6

I
I •

Chapter 5.
Instruction Set

5.1 INTRODUCTION
j

The Z280 CPU's instruction set is a superset of
the Z80's; the Z280 CPU is opcode compatible with
the Z80 CPU. Thus, a Z80 program can be executed
on a Z280 MPU without modification. The
instruction set is divided into ten groups by
function:

• 8-bit load
• 16-bit load and exchange
• Block transfer and search
• 8-bit arithmetic and logical

i

• 16-bit arithmetic
I

• Rotate, shift, and bit manipulation
• Program control
• Input/Output
• CPU control
• Extended instructions

This chapter describes the instruction set of the
Z280 CPUs. First, flags and condition codes are
discussed in relation to the instruction set.
Then, interruptibility of instructions is
discussed and traps are described. The last part
of this chapter is a detailed description of each
instruction, listed in alphabetic order by
mnemonic. This section is intended to be used as
a reference for Z280 MPU programmers. The entry
for each instruction contains a complete
description of the instruction, including
addressing modes, assembly language mnemonics,
instruction opcode formats, and simple examples

■ m

illustrating the use of the instruction.

5.2 ESSOR FLAGS

The flags provide a link between sequentially
executed instructions, in that the result of
executing one instruction may alter the flags, and
the resulting value of the flags can be used to
determine the operation of a subsequent
instruction. The program control instructions
whose operation depends on the state of the flags
are the Jump, Jump Relative, subroutine Call, and
subroutine Return instructions; these instructions
are referred to as conditional instructions.

5.2.1 Carry Flag (C)
*0

The Carry flag is set or cleared depending on the
operation being performed. For add instructions
that generate a carry and subtract instructions
that generate a borrow, the Carry flag is set to
1. The Carry flag is cleared to 0 by an add that
does not generate a carry or a subtract that
generates no borrow. This saved carry facilitates
software routines for extended precision
arithmetic. The multiply and divide instructions
use the Carry flag to signal information about the
precision of the result. Also, the Decimal Adjust
Accumulator instruction leaves the Carry flag set
to 1 if a carry occurs when adding BCD quantities.

• •

For the rotate instructions, the Carry flag is
used as a link between the least significant and
most significant bits for any register or memory
location. During shift instructions, the Carry
flag contains the last value shifted out of any
register or memory location. For logical in­
structions the Carry flag is cleared. The Carry
flag can also be set and complemented with
explicit instructions.

The Flag register contains six bits of status
information that are set or cleared by CPU
operations (Figure 5-1). Four of these bits are
testable (C, P/V, Z, and S) for use with
conditional jump, call, or return instructions.
Two flags are not testable (H, N) and are used for
binary-coded decimal (BCD) arithmetic.

7 •
z 0 H 0 P(V N

Figure 5-1. Flag Register

5.2.2 Add/Subtract Flag (N)

The Add/Subtract flag is used for BCD arithmetic.
Since the algorithm for correcting BCD operations
is different for addition and subtraction, this
flag is used to record whether an add or subtract
was last executed, allowing a subsequent Decimal
Adjust Accumulator instruction to perform
correctly. See the discussion of the DAA in­
struction for further information.

5-1

5 .2 .3 Parity/Overflow Flag (P A)

This flag is set to a particular state depending
on the operation being performed.

%
For signed arithmetic, this flag, when set to 1,
indicates that the result of an operation on
twos-complement numbers has exceeded the largest
number, or is less than the smallest number, that
can be represented using twos-complement
notation. This overflow condition can be
determined by examining the sign bits of the
operands and the result.

The P/V flag is also used with logical operations
and rotate instructions to indicate the parity of
the result. The number of bits set to 1 in a byte
are counted. If the total is odd, odd parity (P =
0) is flagged. If the total is even, even parity
is flagged (P = 1).

During block search and block transfer
instructions, the P A flag monitors the state of
the byte count register (BC). When decrementing
the byte counter results in a zero value, the flag
is cleared to 0 , otherwise the flag is set to 1 .

During the Load Accumulator with I or R register
instructions, the P A flag is loaded with the
contents of the Interrupt A enable bit in the
Master Status register.

♦ • *
•k •

When inputting a byte to a register from an I/O
device addressed by the C register, the flag is
adjusted to indicate the parity of the data.

• 1

5.2.4 Half-Carry Flag (H)

The Half-Carry flag (H) is set to 1 or cleared to
0 depending on the carry and borrow status between
bits 3 and 4 of an 8-bit arithmetic operation and
between bits 11 and 12 of a 16-bit arithmetic
operation. This flag is used by the Decimal
Adjust Accumulator instruction to correct the
result of an addition or subtraction operation on
packed BCD data.

•t

I

5.2.5 Zero Flag (Z)

The Zero flag (Z) is set to 1 if the result
generated by the execution of certain instructions
is a zero.

For arithmetic and logical operations, the Zero
flag is set to 1 if the result is zero; If the
result is not zero, the Zero flag is cleared to 0.

For the block search instructions, the Zero flag
is set to 1 if a comparison is found between the
value in the Accumulator and the memory location
pointed to by the contents of the register pair
HL.

When testing a bit in a register or memory
location, the Zero flag contains the complemented
state of the tested bit (i.e., the Zero flag is
set to 1 if the tested bit is a 0 , and
vice-versa).

For the block I/O instructions, if the result of
decrementing B is zero, the Zero flag is set to 1 ;
otherwise, it is cleared to 0. Also for byte
inputs to registers from 1/0 devices addressed by
the C register, the Zero flag is set to 1 to
indicate a zero byte input.

%

. t

5.2.6 Sign Flag (S)

The Sign flag (S) stores the state of the most
significant bit of the result. When the Z280 CPU
performs arithmetic operations on signed numbers,
binary twos-complement notation is used to
represent and process numeric information. A
positive number is identified by a zero in the
most significant bit. A negative number is
identified by a 1 in the most significant bit.

When inputting a byte from an 1/0 device addressed
by the C register to a CPU register, the Sign flag
indicates either positive (S = 0) or negative (S =
1) data.

For the Test and Set instruction, the Sign bit is
set to 1 if the tested bit is 1, otherwise it is
cleared to 0 .

% .

5.2.7 Condition Codes .

The Carry, Zero, Sign, and Parity/Overflow flags
are used to control the operation of the con­
ditional instructions. The operation of these in­
structions is a function of the state of one of
the flags. Special mnemonics called condition
codes are used to specify the flag setting to be
tested during execution of a conditional
instruction; the condition codes are encoded into
a 3-bit field in the instruction opcode itself.

Table 5-1 lists the condition code mnemonic, the
flag setting it represents, and the binary
encoding for each condition code.

5-2

/

Table 5-1. Condition Codes

Flag Binary
Mnemonic Meaning Setting Code

Condition Codes for Jump, Call, and Return instructions

N2 Not Zero Z = 0 000
Z Zero Z = 1 001
NC No Carry C = 0 010
C Carry C = 1 011
NV No Overflow V = 0 100
PO Parity Odd V = 0 100
V Overflow V = 1 101
PE Parity Even V = 1 101
NS No Sign S = 0 110
P Plus S = 0 110
S Sign S = 1 111
M Minus S = 1 111

• Condition Codes for Jump Relative Instruction

NZ Not Zero Z = 0 100
Z Zerot Z = 1 101
NC No Carry C = 0 110
C Carry C = 1 111

5.3 INSTRUCTION EXECUTION AM) EXCEPTIONS

Two types of exception conditions, interrupts and
traps, can alter the normal flow of program
execution. Interrupts are asynchronous events
generated by a device external to the CPU;
peripheral devices use interrupts to request
service from the CPU. Traps are synchronous
events generated internally in the CPU by
particular conditions that occur during
instruction execution. Interrupts and traps are
discussed in detail in Chapter 6 . This section
examines the relationship between instructions and
the exception conditions.

I\
I

5.3.1 Instruction Execution and Interrupts

When the CPU receives an interrupt request, and it
is enabled for interrupts of that class, the
interrupt is normally processed at the end of the
current instruction. However, the block transfer
and search instructions are designed to be inter­
ruptible so as to minimize the length of time it
takes the CPU to respond to an interrupt. If an
interrupt request is received during a block move,
block search, or block I/O instruction, the in­
struction is suspended after the current iter­
ation. The address of the instruction itself,
rather than the address of the following in­
struction, is saved on the system stack, so that
the same instruction is executed again when the
interrupt handler executes an interrupt return

instruction. The contents of the repetition
counter and the registers that index into the
block operands are such that, after each iter­
ation, when the instruction is reissued upon
returning from an interrupt, the effect is the
same as if the instruction were not interrupted.
This assumes, of course, that the interrupt
handler preserved the registers.

• *

5.3.2 Instruction Execution and Traps
* # *

Traps are synchronous events that result from the
execution of an instruction. The action of the
CPU in response to a trap condition is similar to
the case of an interrupt in interrupt mode 3 (see
Chapter 6). All traps except for Extended
Instruction, System Stack Overflow Warning,
Single Step and Breakpoint-on-Halt are nonmask­
able.

The Z280 MPU supports eight kinds of traps:

• Division Exception
• Extended Instruction

«

• Privileged Instruction
• System Call
• Access Violation (page fault and write protect)
• System Stack Overflow Warning .
• Single Step .
• Breakpoint-on-Halt

• A

The Division Exception trap occurs when executing
a divide instruction if either the divisor is zero
or the result cannot be represented in the
destination (overflow).

I

«

The Extended Instruction trap occurs when an
extended instruction is encountered, but the
Extended Processor Architecture is disabled,
(the EPA bit in the Trap Control register should
be cleared to 0 if there is no EPU in the system
or if the Z280 MPU is configured with an 8-bit
bus). This allows the same software to be run on
Z280 MPU system configurations with or without
Extended Processing Units (EPUs). For systems
without EPUs, the desired extended instructions
can be emulated by software that is invoked by the
Extended Instruction trap. For systems with an
8-bit data bus that also have an EPU, the software
invoked by the Extended Instruction trap can use
I/O instructions to access the EPU. The
information saved on the system stack during this
trap is designed to facilitate the 8-bit I/O
interface to an EPU by providing address
calculation for the operands and by pushing
addresses onto the system stack in the reverse
order from which they will be used by an I/O
interface trap handler.

5-3

The Privileged Instruction trap serves to protect
the integrity of a system from erroneous or
unauthorized actions of user mode processes.
Certain instructions, called privileged
instructions, can be executed only in system
mode. An attempt to execute one of these
instructions in user mode causes a Privileged
Instruction trap.

The System Call instruction always causes a trap.
This instruction is used to transfer control to
system mode software in a controlled way,
typically to request operating system services.

The Access Violation trap occurs whenever the Z280
MPU's on-chip MMU detects an illegal memory
access. Access Violation traps cause instructions
to be aborted. When Access Violation traps occur,
the logical address of the instruction is pushed
onto the system stack along with the Master Status
register; part of the logical address that caused
the page fault is latched in the MMU to indicate
which page frame caused the fault; and the CPU
registers are unmodified, i.e., their contents are
the same as just before the instruction execution
began. (For block move, block search, or block
I/O instructions, the registers are the same as
just before the iteration in which the page fault
occurred.)

t

The System Stack Overflow Warning trap arises
when pushing information onto the system stack
causes the Stack Pointer to reference a specified
16-byte area of memory. Use of this facility

t

protects the system from system stack overflow
errors.

The Single Step trap occurs with the execution of
each instruction, provided the Single-Step control
bit in the Master Status register is set to 1.
This facilitates software debugging of programs.

The Breakpoint-on-Halt trap occurs whenever the
Halt instruction is encountered and the
Breakpoint-on-Halt control bit in the Master
Status reqister is set to 1. This facilitates
software debugging of programs.

* .*
• •

5.4 INSTRUCTION SET FUNCTIONAL GROUPS

This section presents an overview of the Z280
instruction set, arranged by functional groups.
(See Section 5.5 for an explanation of the
notation used in Tables 5-2 through 5-11.)

5.4.1 8-Bit Load Group
*% * ‘

This group of instructions (Table 5-2) includes
load instructions for transferring data between
byte registers, transferring data between a byte
register and memory, and loading immediate data
into byte registers or memory. All addressing
modes are supported for loading between the
accumulator and memory or for loading immediate
values into memory. Loads between other registers
and memory use the IR and SX addressing modes. An
exchanqe instruction is available for swapping the
contents of the accumulator with another register
or with memory.

I
'• ’ , . i '

The LDUD and LDUP instructions are available for
loading to or from the user-mode memory address
space while executing in system mode. The CPU
flags are used to indicate if the transfer was '
successfully completed. LDUD and LDUP are
privileged instructions. The other instructions
in this group do not affect the flags, nor can
their execution cause exception conditions.

Table 5-2. 8-Bit Load Group Instructions

* . * * •' Addressing Modes Available
•

Instruction Name Format R RX IM IR DA X SX RA SR BX

Exchange Accumulator EX A.src • • ■ . -. • • . • • • • •

Exchange H,L EXH.L f 1 .- .- . i
Load Accumulator LD A.src • • • • • ‘ .• • - •

. LD dst,A • # • • • • • ' ' " ••

Load Immediate LD dst.n ^ • • • • • • ’’ • •

Load Register (Byte) LD R.src • • • • • 9
LD dst,R • • .- • \

Load in User Data Space LDUD A.src
» LDUD dst.A * •

Load in User Program Space LDUP A.src • . : •

LDUP dst.A • • • . ‘ ;

5 -4

This group of load and exchange instructions
(Table $-3) allows words of data (two bytes equal
one word) to be transferred between registers and
memory. The exchanqe instructions allow for
switching between the primary and alternate
reqister files, exchanging the contents of two
16-bit registers, or exchanging the contents of an
addressing register with the top word on the
stack. The 16-bit loads include transfers between

$.4.2 16-Bit Load and Exchange Group reqisters and memory and immediate loads of
registers or memory. The Load Address instruction
facilitates the loadinq of the address registers
with a calculated address. The Push and Pop stack
instructions are also included in this group.
None of these instructions affect the CPU flags,
except for EX AF, AF'. The Push instruction can
cause a System Stack Overflow Warning trap;
otherwise, no exceptions can arise from the
execution of these instructions.

Table 5-3. 16-Bit Load and Exchange Group Instructions

Addressing Modes Available
Instruction Name Format R IM IR DA X SX RA SR BX

Exchange HL with Addressing Register EX DE,HL ,
EXXY.HL ;

Exchange Addressing Register with Top of Stack EX (SP),XX
Exchange Accumulator/Flag with Alternate Bank EX AFjAF’
Exchange Byte/Word Registers with Alternate Bank EXX
Load Addressing Register

Load Register (Word)
J

Load Immediate Word

LD XX.src
LD dst,XX
LD RR.src
LD dst.RR
LD dst.nn •

•

. • •
•

•
•
•
•
•

•
. •

•
•

• : • •

*

» .

Load Stack Pointer LD SRsrc ★ • • • •
• LD dst.SP • • • • . "V

Load Address LDA XX.src • •

Pop POP dst • • •
)

•
•

Push PUSH src • • • • •

* Restricted to an addressing register (HL, IX, or IY).

5.4.3 Block Transfer and Search Group
* ■

This group of instructions (Table 5-4) supports
block transfer and strinq search functions. Using
these instructions, a block of up to 65,536 bytes
can be moved in memory or a byte string can be
searched until a given value is found. All the
operations can proceed through the data in either
direction. Furthermore, the operations can be
repeated automatically while decrementing a length
counter until it reaches zero, or they can operate
on one storage unit per execution with the length
counter decremented by one and the source and
destination pointer reqisters properly adjusted.
The latter form is useful for implementing more
complex operations in software by adding other
instructions within a loop containing the block
instructions.

‘ \ * *• 1
\

Various Z280 HPU registers are dedicated to
specific functions for these instructions: the BC
register for a counter, the DE and HL registers
for memory pointers, and the accumulator for
holdinq the byte value being sought. The repeti­
tive forms of these instructions are

interruptible; this is essential since the
repetition count can be as hiqh as 65,536. The
instruction can be interrupted after any
iteration, in which case the address of the
instruction itself, rather than the next one, is
saved on the system stack; the contents of the
operand pointer registers, as well as the
repetition counter, are such that the instruction
can simply be reissued after returning from the
interrupt without any visible difference in the
instruction execution.

Table 5-4. Block Transfer and Search Group

Instruction Name Format

Compare and Decrement CPD
Compare, Decrement and Repeat ' CPDR

‘ Compare and Increment CPI
Compare, Increment and Repeat CPIR '
Load and Decrement LDD
Load, Decrement and Repeat LDDR
Load and Increment LDI
Load, Increment and Repeat LDIR

5-5

This group of instructions (Table 5-5) performs
8-bit arithmetic and loqical operations. The Add,
Add with Carry, Subtract, Subtract with Carry,
And, Or, Exclusive Or, Compare, and signed and
unsigned Multiply take one input operand from the
accumulator and the other from a register, from
immediate data in the instruction itself, or from
memory. All memory addressing modes are
supported: Indirect Register, Short Index, Direct
Address,PC Relative Address, Stack Pointer
Relative, Indexed, and Base Index. Except for the
multiplies, which return the 16-bit result to the
HL register, these instructions return the
computed result to the accumulator. Both signed

5.4.4 8-Bit Arithmetic and Logic Group and unsigned division are provided. All memory
addressinq modes except Indirect Register can be
used to specify the divisor. .

•

The Increment and Decrement instructions operate
on data in a register or in memory; all memory
addressinq modes are supported. Three
instructions operate only on the accumulator:
Decimal Adjust, Complement, and Negate. The final
instruction in this group, Extend Sign, takes its
8-bit input from the accumulator and returns its
16-bit result to the HL register.

/

All these instructions except Extend Sign set the
CPU flags according to the computed result. Only
the Divide instructions can generate an exception.

Table 5-5. 8-Bit Arithmetic and Logic Group

Addressing Modes Available
Instruction Name Format it RX IM IR DA X s x RA SR BX

Add With Carry (Byte) ADC A,src • • • • . • • • • • •

Add (Byte) ADD A.src • * • ' • • # ' • • • •

And AND A,src • • • • + • • • •

Compare (Byte) CP A.src • • • • • • • • •

Complement Accumulator CPL A •

Decimal Adjust Accumulator DAA A • • •

Decrement (Byte) DEC dst • • • • • • •

Divide (Byte) DIV A,src • • • • • •

Divide Unsigned (Byte) DIVU A,src • • • t # • • • • •

Extend Sign (Byte) EXTS A t

Increment (Byte) . INC dst # •
•

• • • • • • A

Multiply (Byte) MULT A,src # • • • • • • • • •

Multiply Unsigned (Byte) MU LIU A,src • • • • • • • •

Negate Accumulator NEGA • •

Or OR A.src # • • • • • • • • •

Subtract With Carry (Byte) SBC A.src • • • • • • • • • •

Subtract (Byte) SUB A.src • • • • • • • • •

Exclusive OR XOR A.src • • • • • • • • •
#

•

5.4.5 16-Bit Arithmetic Operations

This group of instructions (Table 5-6) provides
16-bit arithmetic operations. The Add, Add with
Carry, Subtract with Carry, and Compare
instructions take one input operand from an
addressing register and the other from a 16-bit
register or from the instruction itself; the
result is returned to the addressing register.
The 16-bit Increment and Decrement instructions
operate on data found in a register or in memory;
the Indirect Register, Direct Address or PC
Relative addressing mode can be used to specify
the memory operand. The instruction that adds the
contents of the accumulator to an addressing
register supports the use of signed byte indices
into tables or arrays in memory.

The remaining 16-bit instructions provide general
arithmetic capability using the HL register as one
of the input operands. The word Add, Subtract,
Compare, and signed and unsigned Multiply
instructions take one input operand from the HL
register and the other from a 16-bit register,
from the instruction itself, or from memory using
Indexed, Direct Address, or Relative addressing
mode. The 32-bit result of a multiply is returned
to the DE and HL registers, with the DE register
containing the most significant bits. The signed
and unsigned divide instructions take a 32-bit
dividend in the DE and HL registers (the DE
register containing the most significant bits) and
a 16-bit divisor from a register, from the
instruction, or from memory using the Indexed,
Direct Address, or Relative addressing mode. The

5-6
\

1

16-bit quotient is returned to the HL register and
the 16-bit remainder is returned to the DE
register. The Extend Sign instruction takes the
contents of the HL register and delivers the
32-bit result to the DE and HL registers, with the
DE reqister containinq the most significant bits
of the result. The Negate HL instruction negates

the contents of the HL register.

Except for Increment, Decrement, and Extend Sign,
all the instructions in this group set the CPU
flags to reflect the computed result. The only
instructions that can generate exceptions are the
Divide instructions.

Table 5-6. 16-Bit Arithmetic Operation Instructions

Addressing Modes Available
Instruction Name Format I I IM IR DA X RA

Add With Carry (Word) ADC XX.src •
* V • * •

Add (Word) ADD XX.src
Add Accumulator to Addressing Register ADD XX,A ' i -c

Add Word ADDW HL.src # • • • •
Compare (Word) CPW HL.src • • • • • •

Decrement (Word) DECW dst •
I

Divide (Word) DIV DEHL.src • • •
Divide Unsigned (Word) DIVU DEHL.src • • • #: • < - : ■ •
Extend Sign (Word) EXTS HL 9

* ,•

Increment (Word) INCW dst • •

Multiply (Word) MULT HL.src • • •
.

Multiply Unsigned (Word) MULTU HL.src • • • i
Negate HL NEG HL •

’ 1 *
Subtract With Carry (Word) SBC XX.src • 1 «

Subtract (Word) SUBW HL.src • • # •
*»

a
5.4.6 Bit Manipulation, Rotate and Shift Group

Instructions in this group (Table 5-7) test, set,
and reset bits within bytes and rotate and shift
byte data one bit position. Bits to be
manipulated are specified by a field within the
instruction. Rotation can optionally concatenate
the Carry flaq to the byte to be manipulated.
Both left and right shifting is supported. Right
shifts can either shift 0 into bit 7 (logical
shifts) or can replicate the sign in bits 6 and 7
(arithmetic shifts). The Test and Set instruction
is useful in multiprogramming and multiprocessing
environments for implementing synchronization
mechanisms between processes. All these
instructions except Set Bit and Reset Bit set the
CPU flags according to the calculated result; the
operand can be a reqister or a memory location
specified by the Indirect Register or Short
Index addressinq modes.

The RLD and RRD instructions are provided for
manipulating strings of BCD diqits; these rotate
4-bit quantities in memory specified by the
indirect register. The low-order four bits of the
accumulator are used as a link between rotations
of successive bytes.

None of these instructions generate exceptions.

5.4.7 Progran Control Group
a"’ j

/
t

This group (Table 5-8) consists of the
instructions that affect the Program Counter (PC)
and thereby control program flow. The CPU
reqisters and memory are not altered except for
the Stack Pointer and the stack, which play a
significant role in procedures and interrupts.
(An exception is Decrement and Jump if Non-Zero
[DJNZ], which uses a register as a loop counter.)
The flags are also preserved except for the two
instructions specifically desiqned to set and
complement the Carry flag.

The Jump (JP) and Jump Relative (JR) instructions
provide a conditional transfer of control to a new
location if the processor flaqs satisfy the
condition specified in the instruction. Jump
Relative is a 2-byte instruction that jumps to any
instruction within the range -126 to +129 bytes
from the location of this instruction. Most
conditional jumps in programs are made to
locations only a few bytes away; the Jump
Relative instruction exploits this fact to improve
code compactness and efficiency.

«

A special Jump instruction tests whether the
primary or auxiliary register file is being used
and branches if the auxiliary file is in use. In

5-7

9

Table 5-7. Bit Manipulation, Rotate and Shift Group

Addressing Modes Available 0

Instruction Name Format R IR SX

Bit Test BIT dst • • •

Reset Bit RES dst •
•

• • *

Rotate Left RL dst
•

• • •

Rotate Left Accumulator RLA *

Rotate Left Circular RLC dst • • •

Rotate Left Circular (Accumulator) . RLC A •

Rotate Left Digit ' RLD •
•

Rotate Right RR dst • • *•

Rotate Right Accumulator RRA
i

Rotate Right Circular RRC dst • • «•

Rotate Right Circular (Accumulator) RRCA •

Rotate Right Digit RRD • •

Set Bit SET dst • • •

Shift Left Arithmetic SLA dst • • •

Shift Right Arithmetic SRA dst • • •

Shift Right Logical SRL dst • • t•

Test and Set TSET dst • • •

systems that reserve the auxiliary register file
for interrupt handlers only (via a software
convention), this instruction can be used to
decide whether registers must be saved.

• * l
J

Call and Restart are used for calling subroutines;
the current contents of the PC are pushed onto the
processor stack and the effective address
indicated by the instruction is loaded into the
PC. The use of a procedure address stack in this
manner allows straightforward implementation of
nested and recursive procedures. Call, Jump, and
Jump Relative can be unconditional or based on the
setting of a CPU flag.

Jump and Call instructions are available with the
Indirect Register and PC Relative Address modes in
addition to the Direct Address mode. These can be
useful for implementing complex control structures
such as dispatch tables. When using Direct
Address mode for a Jump or Call, the operand is
used as an immediate value that is loaded into the
PC to specify the address of the next instruction
to be executed.

The conditional Return instruction is a companion
to the Call instruction; if the condition
specified in the instruction is satisfied, it
loads the PC from the stack and pops the stack.

Table 5-8. Program Control Group Instructions

Addressing Modes Available
Instruction Name Format . IR DA RA

Call
Complement Carry Flag
Decrement and Jump if Non-Zero
Jump on Auxiliary Accumulator/Flag
Jump on Auxiliary Register File in Use

JP cc,dst
JR cc.dst
RET cc
RSTp
SC nn
SCF

U U II I f J

Jump Relative
Return
Restart
System Call
Set Carry Flag

CALL cc.dst
CCF
DJNZ dst
JAF dst
JAR dst

A special instruction, Decrement and Jump if
Non-Zero (DJNZ), implements the control part of
the basic Pascal FOR loop in a one-word
instruction.

* %

System Call (SC) is used for controlled access to
facilities provided by the operating system. It
is implemented identically to a trap or interrupt
in interrupt mode 3: the current program status
is pushed onto the system stack, and a new program
status is loaded from a dedicated part of memory.

5.4.8 Input/Output Instruction Group

This group (Table 5-9) consists of instructions
for transferring a byte, a word, or a string of
bytes or words between peripheral devices and the
CPU registers or memory. Byte I/O port addresses
transfer bytes on ADQ-AD7 only. Thus in a 16-bit
data bus environment, 8-bit peripherals must be
connected to bus lines ADQ-AD7 . In an 8-bit data
bus environment, word I/O instructions to external
peripherals should not be used; however, on-chip
peripherals can still be accessed by word I/O
instructions.

The instructions for transferring a single byte
(IN, OUT) can transfer data between any 8-bit CPU.
register or memory address specified in the
instruction and the peripheral port specified by
the contents of the C register. The IN
instruction sets the CPU flags according to the
input data; however, special cases of these
instructions, restricted to using the CPU
accumulator and Direct Address mode, do not affect
the CPU flags. Another variant tests an input
port specified by the contents of the C register
and sets the CPU flags without modifying CPU
registers or memory.

The instructions for transferring a single word
(INW, OUTW) can transfer data between the HL
register and the peripheral port specified by the
contents of the C register. For word I/O, the
contents of H appear on ADQ-AD7 and the contents
of L appear as AD8-AD15. These instructions do
not affect the CPU flags.

The remaining instructions in this group form a
powerful and complete complement of instructions
for transferring blocks of data between I/O ports
and memory. The operation of these instructions
is very similar to that of the block move instruc­
tions described earlier, with the exception that
one operand is always an I/O port whose address
remains unchanged while the address of the other
operand (a memory location) is incremented or
decremented. Both byte and word forms of these
instructions are available. The automatically

repeating forms of these instructions are inter­
ruptible.

• • . ,

I/O instructions are not privileged if the Inhibit
User I/O bit in the Trap Control register is
clear; they can be executed in either system or
user mode, so that I/O service routines can
execute in user mode. The Memory Management Unit
and on-chip peripherals' control and status
registers are ' accessed using the I/O
instructions. The contents of the I/O Page
register are output on AD23-AD15 with the I/O port
address and can be used by external decoding to
select specific devices. Pages FF and FE are
reserved for on-chip I/O and no external bus
transaction is generated. I/O devices can be
protected from unrestricted access by using the
I/O Page register to select among I/O peripherals.

Table 5*9. Input/Output Instruction Group Instructions

Instruction Name Format

Input IN dst,(C)
Input Accumulator IN A,(n)
Input HL INW HL,(C)
Input and Decrement (Byte) IND
Input and Decrement (Word) INDW
Input, Decrement and Repeat (Byte) INDR
Input, Decrement and Repeat (Word) INDRW
Input and Increment (Byte) INI
Input and Increment (Word) INIW
Input, Increment and Repeat (Byte) INIR
Input, Increment and Repeat (Word) INIRW
Output OUT (C),src
Output Accumulator OUT (n),A
Output HL OUTW (C),HL
Output and Decrement (Byte) OUTD
Output and Decrement (Word) OUTDW
Output, Decrement and Repeat (Byte) OTDR
Output, Decrement and Repeat (Word) OTDRW
Output and Increment (Byte) OUTI
Output and Increment (Word) OTIRW
Output, Increment and Repeat (Byte) OTIR :
Output, Increment and Repeat (Word) OTIRW
Test Input TSTI (C)

5.4.9 CPU Control Group

The instructions in this group (Table 5-10) act
upon the CPU control and status registers or
perform other functions that do not fit into any
of the other instruction groups. There are three
instructions used for returning from an interrupt
or trap service routine. Return from Nonmaskable
Interrupt (RETN) and Return from Interrupt (RETI)

5-9

are used in interrupt modes 0, 1 , and 2 to pop the
Program Counter from the stack and manipulate the
Interrupt Mask register, or to signal a reset to
Z8400 Family peripherals. The Return from
Interrupt Long (RETIL) instruction pops a 4-byte
program status from the System stack, and is used
in interrupt mode 3 and trap processing.

Two of these instructions are not privileged: No
Operation (NOP) and Purge Cache (PCACHE). The
remaining instructions are privileged.

Table 5-10. CPU Control Group

Instruction Name Format

Disable Interrupt Dl mask
Enable Interrupt . El mask
Halt HALT

•

Interrupt Mode Select IM p
Load Accumulator From I or R Register LD A.src
Load I or R Register From Accumulator LD dst,A
Load Control LDCTL dst.src
No Operation NOP
Purge Cache PCACHE
Return From Interrupt

T

RETI
Return From Interrupt Long RETIL
Return From Nonmaskable Interrupt RETN

5,4.10 Extended Instruction Group

The Z280 MPU architecture contains a powerful
mechanism for extending the basic instruction set
through the use of external co-processors called
Extended Processing Units (EPUs). A group of 22
opcodes is dedicated for the implementation of
extended instructions using this facility. The
extended instructions (Table 5-11) are intended
for use on a 16-bit data bus; thus, this facility
is available only on the Z-BUS configuration of
the Z280 MPU.

There are four types of extended instructions in
the Z280 MPU instruction set: EPU internal
operations, data transfers from an EPU to memory,
data transfers from memory to an EPU, and data
transfers between an EPU and the CPU's
accumulator. The extended instructions that
access memory can use any of the six basic memory
addressing modes (Indexed, Base Index, PC
Relative, SP Relative, Indirect Register, and
Direct Address). Transfers between the EPU and
CPU accumulator are useful when the program must
branch based on conditions generated by an EPU
operation.

A 4-byte long "template" is embedded in each of
the extended instruction opcodes. These templates
determine the operation to be performed in the EPU
itself. The formats of these templates are
described in the following pages. The
descriptions are from the point of view of the
CPU; that is, only CPU activities are described.
The operation of the EPU is implied, but the full
specification of the instruction template depends
on the implementation of the EPU, and is beyond
the scope of this manual. Fields in the template
that are ignored by the CPU are indicated by
asterisks, and would typically contain opcodes
that determine any operation to be performed by
the EPU in addition to the data transfers
specified by the instruction. A 2-bit
identification field is included in each template,
for use in selecting one of up to four EPUs in a
multiple-EPU system.

The action taken by the CPU upon encountering an
extended instruction depends upon the EPA control
bit in the CPU's Trap Control register. When this
bit is set to 1, indicating that EPUs are included
in the system, extended instructions are
executed. If this bit is cleared to 0, indicating
that there are no EPUs in the system, the CPU
executes an extended instruction trap whenever an
extended instruction is encountered; this allows a
trap service routine to emulate the desired
operation in software. <

Table 5-11. Extended Instructions

Instruction Name Format

Load EPU From Memory EPUM src
Load Memory From EPU MEPU dst
Load Accumulator From EPU EPUF
EPU Internal Operation EPUI

5.5 NOTATION AND BINARY ENCODING

The rest of this chapter consists of detailed
descriptions of the Z280 MPU instructions,
arranged in alphabetical order by mnemonic. This
section describes the notational conventions used
in the instruction descriptions and the binary
encoding for register fields within instruction's
operation codes (opcodes).

The description of each instruction begins on a
new page. The instruction mnemonic and name is
printed in bold letters at the top of each page to
enable the reader to easily locate a desired

4

5 -10

description. The assembly language syntax is then
given in a single generic form that covers all the
variants of the instruction, along with a list of
applicable addressing modes. This is followed by
a description of the operation performed by the
instruction, a listing of all the flags that are
affected by the instruction, a listing of ex­
ception conditions that may be caused by execution
of the instruction, illustrations of the opcodes
for all variants of the instruction, and a simple
example of the use of the instruction.

The following notation is used throughout the
descriptions of the instructions:

src Source location or contents
SX Short Index addressing mode
USP The User Stack Pointer
X Indexed addressing mode
XX One of the 16-bit addressing registers

HL, IX, or IY; also XXA and XXB are used
when two different registers are speci­
fied in the same instruction

XY One of the 16-bit index registers IX or
IY

In the binary encoding of the instruction, lower
case is used for the corresponding encoding of the
assembler syntax. '

(addr)
<addr>

b

BX
cc

d
DA
dd
disp

dst
IM
IR
HSR
n
nn
P
PC
PS

R

RA
RR

RX

SP
SR

A direct address
An address to be encoded using relative
addressing
A 3-bit field specifying the position of
a bit within a byte
Base Index addressing mode
A condition code specifying whether a
flag is set to 1 or cleared to 0
An 8-bit signed displacement
Direct Address addressing mode
A 16-bit signed displacement
The displacement calculated from the
address in relative addressing
Destination location or contents
Immediate addressing mode
Indirect Register addressing mode
The Master Status register
B-bit immediate data
16-bit immediate data
An interrupt mode
The Program Counter
The program status registers (the Program
Counter and Master Status register)
A single 8-bit register of the set
(A,B,C,D,E,H,L); also, R1 and R2 are used
when two different registers are
specified in the same instruction. (Note
that the R register itself is accessed by
a single instruction and violates this
convention.)
The corresponding 8-bit or 16-bit
register in the alternate register file,
such as A'
PC Relative Address addressing mode
A 16-bit register of the set (BC,DE,
HL,SP); also, RRA and RRB are used when
two different registers are specified in
the same instruction
A single byte in the IX or IY registers;
that is, a register in the set (IXH,IXL,
IYH,IYL); also, RXA and RXB are used when
two different registers are specified in
the same instruction
The current Stack Pointer in use
Stack Pointer Relative addressing mode

Brackets ([and]) are used in the assembly
language syntax to indicate an optional field.
For example, the 16-bit addition instruction for

l

adding word data to the HL register is described
S3:

ADDW [HL,]src

This format means the instruction can be written
as:

i

ADDW HL,src
' or

ADDW src
• i

Assignment of a value is indicated by the symbol
"<— ". For example,

i • •

dst <— dst + src
*i • * .

• • * •
i

indicates that the source data is added to the
destination data and the result is stored in the
destination location.

The notation "addr(n)" is used to refer to bit wn"
of a given location, for example, dst(7).

The register field in the binary encoding of an
instruction opcode is encoded as shown in Table
5-12.

%

Table 5-12. Encoding of 8-Bit Registers in
Instruction Opcodes

Register Encoding

A 111
B • 000
C 001
D 010
E 011
H 100
L 101

The remainder of this chapter consists of the
individual descriptions of each Z280 MPU
instruction.

5-11

ADC
Add with Carry (Byte)

ADC [A,]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: A + - A + src + C

\

The source operand together with the Carry flag is added to the accumulator and the
sum is stored in the accumulator. The contents of the source are unaffected. Twos-
complement addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax

R: ADC A,R

RX: ADC A,RX

IM: ADC A,n

IR: ADC A,(HL)

DA: ADC A,(addr)

X: ADC A,(XX + dd)
SX: ADC A,(XY + d)

RA: ADC A,<addr>

SR: ADC A,(SP + dd)

BX: ADC A,(XXA + XXB)

Instruction Format

10 001 r • •

11 011 101 10 001 rx
i11 001 110 n

10 001 110 . .
11 011 101 10 001 111 addrflow) addilhigh)

11 111 101 10 001 XX d(low) d(hlgh)

11 011 101 10 001 110 d

11 111 101 10 001 000 disp(low) dlsp(high)

11 011 101 10 001 000 d(low) cHhlgh)

1 1 0 1 1 101 10 001 bx

Field Encodings: <t>: o for ix, 1 for iy

rx : 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: ADC A,(HL)
Before instruction execution: After instruction execution:

AF: 4 8 szxhxvnl AF: 6 1 00x1x000
HL 2 4 5 4 HL 2 4 5 4

Data memory: Data memory:
S ’

2454: 1 8 • 2454: 1 8 a * •

5 - 1 3

I t

V

Add With Carry (Word)

dst = HL
src = BC, DE, HL, SP

or
dst = IX
src = BC, DE, IX, SP

or
dst = IY
src = BC, DE, IY, SP

The source operand together with the Carry flag is added to the destination and the sum
is stored in the destination. The contents of the source are unaffected. Twos-complement
addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise

»

H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the

result is of the opposite sign; cleared otherwise
N: Cleared

' C: Set if there is a carry from the most significant bit of the result; cleared otherwise.

ADC dst,src

Operation: dst + - dst + src + C

Exceptions: None

Addressing
Mode Syntax

ADC HL.RR

ADC XY.RR

Instruction Format

11 101 101 01 IT 010

11 ¢11 101 11 101 101 01 XX 010

Field Encodings: <t>: o for ix, 1 for iy

r r : 001 for BC, 011 for DE, 101 for add register to itself, 111 for SP

Example: ADC HL,BC
Before instruction execution: After instruction execution: . /

F
BC
HL

« *• szxhxvnl F: • 00x0x001
2 2 o CO BC: 2 3 0 8
F 0

00CO HL* 1 3 , 4 1

f r

5 - 1 4

ADD dst,A

ADD
Add Accumulator to Addressing Register

i

dst = HL, IX, IY

Operation: dst ♦- dst + A

The contents of the accumulator are added to the contents of the destination and the
result is stored in the destination. The contents of the accumulator are unaffected. The
contents of the accumulator are treated as a signed binary integer and are sign-
extended to 16 bits; twos-complement addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the

result is of the opposite sign from the operands; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax

ADD HL,A

ADD XY,A

Instruction Format

11 101 101 01 101 101

11 011 101 11 101 101 01 101 101

Field Encoding: <t>: o for ix, 1 for iy

Example: ADD HL,A
Before instruction execution: After instruction execution: '

AF: E 2 szxhxvnc AF: E 2 00x1x001
HL 2 3 8 4 HL 2 3 6 6

Computation: accumulator is sign-extended.

+ 2384
2366

5 - 1 5

ADD
Add (Byte)

ADD [AJsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: A A + src

The source operand is added to the accumulator and the sum is stored in the ac­
cumulator. The contents of the source are unaffected. Twos-complement addition is
performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Exceptions: None •

Addressing
Mode

t
Syntax

/ ••
Instruction Format

*

R:
RX:
IM:
IR:

DA:
X:

SX:
RA:
SR:
BX:

ADD A,R

ADD A,RX

ADD A,n

ADD A,(HL)

ADD A,(addr)

ADD A,(XX +dd)

ADD A,(XY + d)

ADD A,<addr>

ADD A,(SP + dd)

ADD A,(XXA + XXB)

10 000 r •
*

11 <M1 101 10 000 rx

11 000 110 n I
10 000 110

11 011 101 10 000 bx

11 011 101 10 000 111 addr(low) addr(high)

11 111 101 10 000 XX d(low) d(hlgh)

11 ♦11 101 10 000 110 d *

11 111 101 10 000 000 dlsp(low) dlsp(high)

11 011 101 10 000 000 d(low) d(hlgh)

Field Encodings: ♦ :
rx :
xx:
bx:

0 for IX. 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd). 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: ADD A,(HL)
Before instruction execution: After instruction execution:

AF: 4 8 szxhxvnc AF: 6 0 00x1x000
HL: 2 4 5 4 HL 2 4 5 4

Data memory: Data memory:

2454: 2454:

5 - 1 6
J

ADD
Add (Word)

ADD dst,src dst = HL
src = BC, DE, HL, SP

or
dst = IX
src = BC, DE, IX, SP

or
dst = IY
src = BC, DE, IY, SP

Operation: dst dst + src

• *

The source operand is added to the destination and the sum is stored in the destination.
The contents of the source are unaffected. Twos-complement addition is performed.

Flags: S: Unaffected
Z: Unaffected
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Unaffected
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing •

Mode Syntax Instruction Format

. A D D HL,RR 00 rr 001

AD D XY.RR 11 011 101 00 rr 001

Field Encodings: ¢ : 0 for IX. 1 for IY
rr: 001 for BC, 011 for DE, 101 for add register to itself, 111 for SP

Example: A D D H L ,B C •

Before instruction execution: After instruction execution:

F: szxhxvnc F: szx0xv01
BC: 2 3 0 8 BC: 2 3 0 8
HL: F 0 3 8 HL: 1 3 4 0

i

\ 5 - 1 7

I

ADDW
Add Word

ADDW [HL,]src src = R, IM, DA, X, RA

Operation: HL * - HL + src

The source operand is added to the HL register and the sum is stored in the HL register.
The contents of the source are unaffected. Twos-complement addition is performed.

t . t

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and

the result is of the opposite sign; cleared otherwise
N: Cleared %
C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Exceptions: None
• t

Addressing
Mode Syntax Instruction Format

/

R: ADDW

ADDW

HL,RR

HL,XY

IM: ADDW HL,nn

DA: ADDW HL,(addr)

X: ADDW HL,(XY + dd)

RA: ADDW HL,<addr>

IR: ADDW HL.(HL)

11 101 101 11 IT 110

11 ♦ 11 101 11 101 101 11 100 110

11 111 101 11 101 101 11 110 110 n(low byte) n(high byte)

11 011 101 11 101 101 11 010 110 addr(low) addr(hlgh)

11 in 101 11 101 101 11 xy 110 d(low) d(high)

11 011 101 11 101 101 11 110 110 dlsp(low) disp(high)

ti on ioi 11 ioi ioi n ooo no

Field Encodings: ♦ : o for ix, 1 for iy

r r : 000 for BC, 010 for DE, 100 for HL. 110 for SP
xy: 000 for (IX + dd), 010 for (IY + dd)

Example: ADDW HL,DE
I •

• v . »

Before instruction execution: After instruction execution:

\

F: szxhxvnc
DE 0 0 1 0
HL A 1 2 3

F: 10x0x000
DE 0 0 1 0
HL A 1 3 3

I

5 - 1 8

AND
AND

AND [A,]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
»

Operation: A -*-A AND src

✓ .

A logical AND operation is performed between the corresponding bits of the source
operand and the accumulator and the result is stored in the accumulator. A 1 bit is
stored wherever the corresponding bits in the two operands are both 1s; otherwise a 0
bit is stored. The contents of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set - ' .
P: Set if the parity is even; cleared otherwise

' N: Cleared
C: Cleared

Exceptions: None

V

Addressing
Mode

R:
RX:
IM:
IR:

DA:
X:

SX:
RA:
SR:
BX:

Syntax

AND A,R

AND A,RX

AND A,n

AND A,(HL)

AND A,(addr)

AND A,(XX +dd)

AND A,(XY + d)

AND A,<addr>

AND A,(SP + dd)
AND A,(XXA + XXB)

Instruction Format

10 100 r

11 ¢11 101 10 100 rx
X

i i 100 110 n

10 100 110 •

11 011 101 10 100 111 addr(low) addifhigh)

11 111 101 10 100 XX d(low) d(high)

11 ¢11 101 10 100 110 d

11 111 101 10 100 000 disp(low) dispfhigh)

11 011 101 10 100 000 d(low) d(high)

11 011 101 10 100 bx ’’

Field Encodings: <t>:
rx:
xx:
bx:

0 for IX. 1 for IY
100 for high byte. 101 for low byte
001 for (IX + dd), 010 for (IY + dd). 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example AND A,(HL)
«

Before instruction execution: After instruction execution:

AF: 4 8 szxhxpnc AF: 0 8 00x1x000
HL: 2 4 5 4 HL: 2 4 5 4

Data memory: Data memory:
I

2454: 1 8 2454: 1 8 t

. /

5 - 1 9

BIT
Bit Test

BIT b.dst dst = R, IR, SX

Operation: Z NOT dst(b)

The specified bit b within the destination operand is tested, and the Zero flag is set to 1 if
the specified bit is zero, otherwise the Zero flag is cleared to 0. The contents of the
destination are unaffected. The bit to be tested is specified by a 3-bit field in the instruc­
tion; this field contains the binary encoding for the bit number to be tested. The bit
number must be between 0 and 7.

Flags: S: Unaffected
Z: Set if the specified bit is zero; cleared otherwise
H: Set
P: Unaffected
N: Cleared
C: Unaffected

Exceptions: None •

Addressing
Mode Syntax

*

Instruction Format

R:
IR:

SX:

BIT b.R

BIT b,(HL)

BIT b;(XY + d)

11 001 011 01 b r

11 001 011 01 b 110

11 ¢11 101 11 001 011 d 01 b 110

Field Encoding: <t>: o for ix, 1 for iy

Example: BIT 1,A
Before instruction execution: After instruction execution:

AF 00010110 szxhxpnc AF: 00010110 s0x1xp0c

4

/\

5 - 2 0

t 0 ♦

CALL
Call

CALL [cc,]dst dst = IR, DA, RA
t

Operation:

(

If the cc is satisfied then: SP * - SP - 2
(SP) — PC
PC dst

A conditional call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “ cc” specified in the instruction: an uncondi­
tional call always transfers control to the destination address. The current contents of
the Program Counter (PC) are pushed onto the top of the stack; the PC value used is the
address of the first instruction byte following the Call instruction. The destination address
is then loaded into the PC and points to the first instruction of the called procedure. At
the end of a procedure a return instruction (RET) can be used to return to the original
program.

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a call
performed conditionally on the setting of the flag.

When using DA mode with the CALL instruction, the operand is not enclosed in paren­
theses.

Flags: No flags affected

Exceptions: System Stack Overflow Warning

Addressing
Mode Syntax Instruction Format

IR: CALL cc,(HL)

CALL (HL)

DA: CALL cc.addr

CALL addr

RA: CALL cc,<addr>

CALL <addr>

11 011 101 11 CC 100

11 011 101 11 001 101 “unconditional callff

11 cc 100 addr(low) addr(high)

11 001 101 addr(low) addr(hlgh)

11 111 101 11 cc 100 disp(low)

11 111 101 11 001 101 dlsp(low)

“unconditional call”

distfhlgh)

dlsp(high) “unconditional call”

Field Encoding: cc : OOO for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
110 for P or NS, 111 for M or S

Example: CALL 2520H
/ •

Before instruction execution: After instruction execution:

PC: 1 6 3 0 PC: 2 5 2 0
SP: F F 2 6 SP: F F 2 4

Data memory: • Data memory:
*

FF24: 0 0 FF24: S 3
FF25: 0 0 FF25: 1 6

5 - 2 1

CCF
Complement Carry Flag

CCF

Operation: C NOT C

The Carry flag is inverted.

Flags: S: Unaffected
Z: Unaffected

»

H: The previous state of the Carry flag
P: Unaffected
N: Cleared

/

C: Set if the Carry flag was clear before the operation; cleared otherwise

Exceptions: None
• •

Addressing
Mode Syntax Instruction Format

• CCF
I

00 111 111
*

Example: CCF . *

Before instruction execution:
»

After instruction execution:

F: szxhxvnO
t

F: szxOxvOI

CP
Compare (Byte)

CP [A,]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
1

Operation: A - src
t

The source operand is compared with the accumulator and the flags are set according­
ly. The contents of the accumulator and the source are unaffected. Twos-complement
subtraction is performed. ' • ?*

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and

the result is the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax

R: CP A,R

RX: CP A,RX

IM: CP A,n

IR: CP A,(HL)

DA: CP A,(addr)

X: CP A,(XX + dd)

SX: CP A,(XY + d)

RA: CP A,<addr>

SR: CP A,(SP + dd)

BX: CP A,(XXA + XXB)

Instruction Format

10 in r

ii ¢11 101 10 111 rx

11 111 110 n

10 in 110

i i 011 101 10 111 111 addr(low) addr(hlgh)

i i 111 101 10 111 XX d(k>w) d(hlgh)

i i ¢11 101 10 111 110 d

i i 111 101 10 111 000 di8p(low) disp(high)

11 011 101 10 111 000 d(low) d(high)

11 011 101 10 111 bx

%

Field Encodings: <t>:
rx:
xx:
bx:

0 for IX. 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX). 010 for (HL + IY), 011 for (IX + IY)

Example: CP A,(H L)
Before instruction execution: After instruction execution:

AF: 4 8 szxhxvnc AF: 4 8 00x0x010
HL: 2 4 5 4 HL 2 4 5 4

Data memory: • Data memory: •

2454: 1 8 2454: 1 8

I

5 - 2 3

CPD
Compare and Decrement

CPD t •

Operation: A -(H L)
HL — HL - 1
BC — BC - 1 •• •

*1.

.

This instruction is used for searching strings of byte data. The byte of data at the loca­
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed. Next the HL register is decremented by one, thus moving the pointer to the
previous element in the string. The BC register, used as a counter, is then decremented
by one.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the

memory byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Exceptions: None
? *

Addressing • •

Mode Syntax Instruction Format

CPD 11 101 101 10 101 001

Example:
Before instruction execution: After instruction execution:

AF: 3 B szxhxvnc AF: 3 B 01x0x01c
HL: 1 2 1 5 HU 1 2 1 4
BC: 0 0 0 1 BC: 0 0 0 0

Data memory:
V 9

i Data memory:
•

1215: 3 B $ 1215: 3 B #

5 - 2 4

CPDR

CPDR
Compare, Decrement and Repeat

Operation: Repeat until BC = 0 or match: A - (HL)
H L - H L - 1
BC BC - 1

This instruction is used for searching strings of byte data. The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac­
cumulator until either an exact match is found or the string length is exhausted. The Sign
and Zero flags are set to reflect the result of the last comparison. The contents of the
accumulator and the memory bytes are unaffected. Twos-complement subtraction is per­
formed.

After each comparison, the HL register is decremented by one, thus moving the pointer
to the previous element in the string. The BC register, used as a counter, is then de­
cremented by one. If the result of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.
This instruction can be interrupted after each execution of the basic operation. The Pro­
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

Flags: ' S: Set if the last result is negative; cleared otherwise
Z: Set if the last result is zero, indicating that the contents of the accumulator and

the memory byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Exceptions: None

Addressing
Mode Syntax

CPDR

Instruction Format

11 101 101 10 111 001

Example: CPDR

Before instruction execution: After instruction execution:

t

AF: F 3 szxhxvnc AF: F 3 01x0x11c
HL: 1 1 1 • HL: 1 1 1 5
BC: 0 0 0 7 BC: 0 0 0 4

Data memory: Data memory: *

, <

1116: F 3
« «•

1116: F 3
1

1117: 0 0 ii
♦i 1117: 0 0

1118: 5 2
t

i 1118: 5 2

5 - 2 5

CPI
*

Compare and Increment

CPI

Operation: A - (HL)
HL ♦" HL + 1
BC BC - 1

This instruetion is used for searching strings of byte data. The byte of data at the loca­
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed. -

Next the HL register is incremented by one, thus moving the pointer to the next element
in the string. The BC register, used as a counter, is then decremented by one.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the

memory byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise

V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

CPI 11 101 101 10 100 001

Example: CPI

Before instruction execution: After instruction execution:

AF: 3 B szxhxvnc AF: 3 B 01x0x01c
HL 1 2 1 5 HL: 1 2 1 6
BC: 0 0 0 1 BC: 0 0 0 0

Data memory: Data memory:
. \

1215: 3 B • 1215: 3 B 4

* *

t \
\

5 - 2 6

t

t

CPIR
Compare, Increment and Repeat

CPIR ~

Operation: Repeat until BC = 0 or match: A - (HL)
HL«-HL + 1 '
BC — BC - 1

This instruction is used for searching strings of byte data. The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac­
cumulator until either an exact match is found or the string length is exhausted. The
Sign and Zero flags are set to reflect the result of the comparison. The last contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed.

After each comparison, the HL register is incremented by one, thus moving the pointer
to the next element in the string. The BC register, used as a counter, is then de­
cremented by one. If the result of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.
This instruction can be interrupted after each execution of the basic operation. The Pro­
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

Flags: S: Set if the last result is negative; cleared otherwise
Z: Set if the last result is zero, indicating that the contents of the accumulator and

the memory byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected

Exceptions: None
•

Addressing
Mode Syntax Instruction Format

< CPIR 11 101 101 10 110 001
I

Example: CPIR
* »

Before instruction execution: After instruction execution:

AF: F 3 szxhxvnc AF: F 3 01x0x11c
HL 1 1 1 8 HL: 1 1 1 B
BC: 0 0 0 7 BC: 0 0 0 4

Data memory: ' Data memory:

•

1118: 2 5 • 1118: 2 5 • ■'

1119: 0 0
V

1119: 0 0
111A: F 3

*
111A: F 3

5 - 2 7

CPL
Complement Accumulator /

CPL [A]

Operation: A NOT A
i

The contents of the accumulator are complemented (ones complement); all 1 bits are
changed to 0 and vice-versa.

Flags: S: Unaffected
Z: Unaffected
H: Set
V: Unaffected
N: Set
C: Unaffected

Exceptions: None

Addressing
Mode Syntax instruction Format

00 101 111CPL A

Example: CPL A

Before instruction execution: After instruction execution:

AF: 2 8 szxhxvnc AF: D 7 szxlxvlc

5 - 2 8

CPW
Compare (Word)

CPW [HLJsrc src = R, IM, DA, X, RA

Operation: HL - src

' i.

The source operand is compared with the HL register and the flags are set accordingly.
The contents of the source and HL are unaffected. Twos-complement subtraction' is
performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the

result is the same sign as the source; cleared otherwise
N: Set '
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: CPW

CPW

HL,RR

HL,XY

IM: CPW HL,nn

DA: CPW HL,(addr)

X: CPW HL,(XY + dd)

RA: CPW HL,<addr>

IR: CPW HL,(HL)

11 101 101 11 IT 111

11 <011 101 11 101 101 11 100 111

r « in 101 101 101 LnJ 110 in n(low byte) n(high byte)

i « 011 101 LnJ 101 101 F T 010 in addr(low) addr(high)

I " 111 101 F T 101 101 E 3 in d(low) d(high)

i n 011 101 I 11 101 101 0 iio m disp(low) dlap(high)

11 on 101 t l 101 101 11 000 111

I .

Field Encodings: <t>: o for ix, 1 for iy

it : 000 for BC, 010 for DE, 100 for HL. 110 for SP

Example: CPW HL.DE
Before instruction execution: After instruction execution:

F: szxhxvnc F: 10x0x010
DE 0 0 1 0 DE: 0 0 1 0
HL: A 1 2 3 HL:

i

A 1 2 3

5 - 2 9

DA A
Decimal Adjust Accumulator

DAA

Operation: A Decimal Adjust A

The accumulator is adjusted to form two 4-bit BCD digits following a binary,
twos-complement addition or subtraction on two BCD-encoded bytes. The table below
indicates the operation performed for addition (ADD, ADC, INC) or subtraction (SUB, SBC,
DEC, NEG).

Operation of DAA instruction

Operation

' *
C Before

DAA

Hex Value in
Upper Digit
(Bits 7-4)

H Before
DAA

Hex Value in
Lower Digit
(Bits 3-0)

Number
Added
to Byte

C After
DAA

i

H After
DAA

• 0 0-9 0 0-9 00 0 0
0 0-8 0 A-F 06 0 1

ADD 0 0-9 1 0-3 06 0 0
ADC 0 A-F 0 0-9 60 1 0
INC 0 9-F 0 A-F 66 1 1

(N = 0) 0 A-F 1 0-3 66 1 0
1 , 0-2 0 0-9 60 1 0
1 0-2

1

0 A-F 66 1 1
1 0-3 % 1 0-3 66 1 . 0

SUB 0 0-9 0 0-9 00 0 0 '
SBC 0 0-8 1 6-F FA 0 1
DEC 1 7-F 0 0-9 . A0 1 0
NEG 1 6-F 1 6-F 9A 1 t '

(N = 1)

Flags:

The operation is undefined if the accumulator was not the result of a binary addition or sub­
traction of BCD digits.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: See table above
P: Set if the parity of the result is even; cleared otherwise
N: Not affected
C: See table above

Exceptions: None t * *

Addressing
t

Mode Syntax Instruction Format

DAA 00 100 111*

i /

/

5 - 3 0
i

V

Example:

t

/

DAA

Before instruction execution: After instruction execution:

2 1 szxOxpOl (AF: 8 8 00x0x001

j t

/

I

/ /

r

i

)
i

/

\

iC
'vj

«

5 - 3 1

DEC
Decrement (Byte)

DEC dst dst = R, RX, IR, DA, X, SX, RA, SR, BX

Operation:
> ’

The destination operand is decremented by one and the result is stored in the destina­
tion. Twos-complement subtraction is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 80h; cleared otherwise
N: Set

*

C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: DEC R
RX: DEC RX
IR: DEC (HL)

DA: DEC (addr)
X: DEC (XX + dd)

SX: DEC (XY + d)
RA: DEC <addr>
SR: DEC (SP + dd)
BX: DEC (XXA + XXB)

00 r 101

11 ¢11 101

00 110 101

11 011 101

11 in 101

11 o n 101

11 111 101

11|011|101

1110111101

00 IX 101

00 xx 101

00 110 101

00 000 101

00 bx 101

00 111 101 add r(low) addrfhlgh)

d(low)

d(low)

d(hlgh)

00 000 101 disp(low) disp(hlgh)

d(high)

Field Encodings: ¢ :
rx :
xx:
bx:

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for(HL + dd)
001 for (HL + IX), 010 for (HL + IY). 011 for (IX + IY)

Example: DEC (HL)
Before instruction execution: After instruction execution:

F:
HL

szxhxvnc
2 4 5 4

Data memory:

F:
HL

10x0x01c
2 4 5 4

Data memory:

2454: 2454:

/

✓

5 - 3 2

DEC[W]
Decrement (Word)

DEC[W] dst
or
DECW dst

dst = R

dst = IR, DA, X, RA

Operation: dst dst - 1 1

* l

The destination operand is decremented by one. Twos-complement subtraction is
performed. , *

9

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax

R: DECW RR
DECW XY

IR: DECW (HL)
DA: DECW (addr)

X: DECW (XY + dd)
RA: DECW <addr>

Instruction Format

00 IT 011

11 011 101 00 101 011

11 011 101 00 001 011

11 011 101 00 011 011 addrflow) addr(hlgh)

11 111 101 00 xy 011 d(low) d(high)
11 011 101 00 111 011 disp(low) disp(hlgh)

Field Encodings: 0 : 0 for ix, 1 for iy

xx: 001 for BC, 011 for DE, 101 for HL, 111 for SP
xy: 001 for (IX + dd), 011 for (IY + dd)

Example: DECW HL
Before instruction execution: After instruction execution:

HU 2 3 0 8 2 3 0 7

5 - 3 5

Disable Interrupt

Dl mask Mask = Hex value between 0 and 7Fh

Operation: If mask(i) = 1 then MSR(i) 0

The designated interrupt control bits in the Master Status register (MSR) are cleared to
0, thus disabling all interrupts on these inputs; all other interrupt enables in the MSR are
unaffected. If no mask is present then all interrupts are disabled.
Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i.

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

Dl
Dl mask

11 110 011

11 101 101 01 110 111 mask

Mask = byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i;
mask(7) must be zero.

Example: Dl 23H

Before instruction execution: After instruction execution:

MSR: 0 0 7 F MSR: 0 0 5 C

/ I

DIV
Divide (Byte)

J y ■

DIV [HL,]src src = R, RX, IM. DA, X, SX, RA, SR, BX

Operation A HL -5- src
L remainder

r

The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H register are unaffected. Both operands are treated as
signed, twos-complement integers and division is performed so that the remainder is of
the same sign as the dividend.

There are three possible outcomes of the DIV instruction, depending on the division and
the resulting quotient:

CASE 1: If the quotient is within the range -2 7 to 27-1 inclusive, then the quotient is
left in the accumulator, the Overflow flag is cleared to 0, and the Sign and Zero flags are
set according to the value of the quotient.

** *

CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

CASE 3: If the quotient is outside the range -27 to 27 -1 , the accumulator remains un­
changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.
Then the Division Exception trap is taken.

Flags: S: Cleared if V flag is set; else set if the quotient is negative, cleared otherwise
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected
V: Set if the divisor is zero or if the computed quotient lies outside the range fro m -27

to 2 7 - 1; cleared otherwise
N: Unaffected
C: Unaffected

Exceptions: Division Exception •

Addressing
Mode Syntax Instruction Format

11 101 101 11 r 100 •

11 ¢11 101 11 101 101 11 rx 100 •

11 111 101 11 101 101 11 111 100 n

11 011 101 11 101 101 11 111 100 addr(low) addr(hlgh)

11 111 101 11 101 101 11 XX 100 d(low) d(hlgh)

11 ¢11 101 11 101 101 11 110 100 d

11 111 101 11 101 101 11 000 100 disp(low) dlsp(high)

11 011 101 11 101 101 11 000 100 d(low) d(hlgh)
•11 011 101 11 101 101 11 bx 100

11 101 101 11 100 100

R: DIV HL,R
RX: DIV HL,RX
IM: DIV HL,n
DA: DIV HL,(addr)

X: DIV HL ,(XX +dd)
SX: DIV HL,(XY + d)
RA: DIV HL,<addr>
8R: DIV HL,(SP + dd)
BX: DIV HL,(XXA + XXB)
IR: DIV HL,(HL)

X

5 - 3 5

Field Encodings:

Example:

¢ : 0 for IX, 1 for IY
rx : 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

DIV HL,C
Before instruction execution:

AF:
C:

HL:

After instruction execution:

5 5 szxhxvnc
F E

F F F D

AF:
C:

HL

0 1 OOxhxOnc
F E

F F F F

X

DIVU
Divide Unsigned (Byte)

DIVU [HLJsrc src = R, RX, IM, DA, X, SX, RA, SR, BX

I .

Operation: A HL src ' „
L * - remainder

The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H register are not affected. Both operands are treated as
unsigned, binary integers. '

There are three possible outcomes of the DIVU instruction, depending on the division
and the resulting quotient:

0

CASE 1: If the quotient is less than 28, then the quotient is left in the accumulator, the
Overflow and Sign flags are cleared to 0 and the Zero flag is set according to the value
of the quotient.

/ •

CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow flags are set to 1 and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

• 1 *
CASE 3: If the quotient is greater than or equal to 28, the accumulator remains un­
changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.
Then the Division Exception trap is taken.

Flags: S: Cleared
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected
V: Set if the divisor is zero or if the computed quotient is greater than or equal to

28; cleared otherwise
N: Unaffected
C: Unaffected

Exceptions: Division Exception
• •

Addressing *
•

Mode Syntax Instruction Format t

R:
RX:
IM:
DA:

X:
SX:
RA:
SR:
BX:
IR:

DIVU HL.R

DIVU HL.RX

DIVU HL,n

DIVU HL,(addr)

DIVU HL,(XX +dd)

DIVU HL,(XY + d)

DIVU HL,<addr>

DIVU HL,(SP + dd)

DIVU HL,(XXA + XXB)

DIVU HL,(HL)

11 101 101 11 101

11 ¢11 101

11 111 101

11

iT

101 101 11 rx 101

101 101 11 111 101 n

11 011 101 11 101 101 11 111 101 addr(low) addrthigh)

11 111 101 11 101 101 11 XX 101 d(low) d(hlgh)

11 ¢11 101 11 101 101 11 110 101 d

11 111 101 11 101 101 11 000 101 dlsp(low) dlsp(high)

11 011 101 11 101 101 11 000 101 d(low) d(high)

11 011 101 11 101 101 11 bx 101

11 101 101 tl 110 101

5 - 3 7

\

Field Encodings: <t>:
rx:
xx:
bx:

0 for IX, 1 for IV
100 for high byte, 101 for low byte ,
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

• \

Example: DIVU HL,C
• #

Before instruction execution: After instruction execution:

AF: 5 5 szxhxvnc
C: 0 2

HL 0 1 0 1

AF: 8 0 OOxhxOnc
C: 0 2

HL 0 1 0 1

5 - 3 8

i

DIVUW
Divide Unsigned (Word)

DIVUW [DEHLJsrc src = R, IM, DA, X, RA “
*

Operation: HL DEHL + src
DE remainder

The contents of the DE and HL registers (with the most significant bits of the dividend in
the DE register) are divided by the source operand (divisor) and the quotient is stored in
the HL register and the remainder in the DE register. The contents of the source are
unaffected. Both operands are treated as unsigned, binary integers.

There are three possible outcomes of the DIVUW instruction, depending on the division
and the resulting quotient:

CASE 1: If the quotient is less than 216, then the quotient is left in the HL register and
the remainder is left in the DE register, the Overflow and Sign flags are cleared to 0 and
the Zero flag is set according to the value of the quotient.

CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

CASE 3: If the quotient is greater than 216-1, then the DE and HL registers remain un­
changed, the Overflow flag is set to 1, and the Zero and Sign flags are cleared to 0
Then the Division Exception trap is taken.

Flags: S: Cleared
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected

0

V: Set if the divisor is zero or if the computed quotient is greater than or eaual tn pie-
cleared otherwise

N: Unaffected
C: Unaffected

Exceptions: Division Exception

Addressing
Mode

DA:
X:

RA:
IR:

Syntax

DIVUW DEHL.RR

DIVUW DEHL.XY

DIVUW DEHL.nn

DIVUW DEHL,(addr)

DIVUW DEHL,(XY + dd)

DIVUW DEHL, <addr>

DIVUW DEHL.(HL)

Instruction Format

11 101 101 11 rr 011

11 ♦11 101 11 101 101 11 101 011

11 111 101 11 101 101 11 111 011 P "(low)
11 011 101 11 101 101 11 011 011 ■ddrflow!
11 111 101 11 101 101 11 xy 011 dlspdow)
11 011 101 11 101 101 11 111 011 dispdow) |

tl 011 101 11 101 101 tl 001 011

n(hlgh)

addr(htoh) |

dl»p(hlgh)

di»p(hlflh)

Field Encodings: ♦ :
rr:

xy:

0 for IX. 1 for IY
001 for BC. 011 for DE. 101 for HL, 111 for SP
001 for (IX + dd), 011 for (IY + dd)

5 - 3 9

Example: DIVUW DEHL.6
;

Before instruction execution: After instruction execution:

F: szxhxvnc F: OOxhxOnc
DE 0 0 0 0 DE 0 0 0 4
HL 0 0 2 2 HL • 0 0 5

/
<

I

i\ .

s

I

C- rk

5 - 4 0

DIVW
Divide (Word)

DIVW [DEHL,]src src = R, IM, DA, X, RA

Operation: HL«-DEHL src
DE remainder

The contents of the DE and HL registers (with the DE register containing the most signifi­
cant bits of the dividend) are divided by the source operand (divisor) and the quotient is
stored in the HL register. The contents of the source are unaffected. Both operands are
treated as signed, twos-complement integers and division is performed so that the re­
mainder is of the same sign as the dividend.

There are three possible outcomes of the DIVW instruction, depending on the division
and the resulting quotient:
CASE 1: If the quotient is within the range - 215 to 215 - 1 inclusive, then the quotient is
left in the HL register and the remainder is left in the DE register, the Overflow flag is
cleared to 0, and the Sign and Zero flags are set according to the value of the quotient.
CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.

CASE 3: If the quotient is outside the range - 215 to 215 — 1, the DE and HL registers re­
main unchanged, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to
0. Then the Division Exception trap is taken.

Flags: S: Cleared if V flag is set; else set if the quotient is negative, cleared otherwise
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected
V: Set if the divisor is zero or if the computed quotient lies outside the range from - 215

to 215 - 1 ; cleared otherwise
. N: Unaffected

C: Unaffected

Exceptions: Division Exception
•

Addressing
Mode

•

Syntax Instruction Format

R: DIVW

DIVW

DEHL.RR

DEHL.XY

IM: DIVW DEHL,nn

DA: DIVW DEHL.(addr)

X: DIVW DEHL,(XY + dd)

RA: DIVW DEHL,<addr>

IR: DIVW DEHL,(HL)

11 101 101 11 rr 010

11 ¢11 101 11 101 101 11 101 010

11 111 101 11 101 101 11 111 010 n(low) n(hlgh)

11 011 101 11 101 101 11 011 010 addr(low) addr(hlgh)

11 111 101 11 101 101 11 xy 010 d(low) d(high)

11 011 101 11 101 101 11 111 010 dlsp(low) disp(hlgh)

11 011 101 11 101 101 11 001 010 •

Field Encodings: <t>:
rr:

xy:

0 for IX, 1 for IY
001 for BC, 011 for DE, 101 for HL, 111 for SP
001 for (IX + dd), 011 for (IY + dd)

5 - 4 1

V

Example: DIVW DEHL. ,6

Before instruction execution: After instruction execution:

F: szxhxvnc F: OOxhxOnc
DE 0 0 0 0 DE 0 0 0 4
HL 0 0 2 2 HL 0 0 0 5

W

c

\
\

4

5 - 4 2
\

/

DJNZ
Decrement and Jump if Non-Zero

DJNZ dst . dst = RA

Operation: B * - B - 1
if B # 0 then PC * - dst

The B register is decremented by one. If the result is non-zero, then the destination ad­
dress is calculated and then loaded into the Program Counter (PC). Control then passes
to the instruction whose address is pointed to by the PC. When the B register reaches
zero, control falls through to the instruction following DJNZ. This instruction provides a
simple method of loop control.
The destination address is calculated using Relative addressing. The displacement in the
instruction is added to the PC; the PC value used is the address of the instruction following
the DJNZ instruction. The 8-bit displacement is treated as a signed, twos-complement
integer. Thus the branching range from the location of this instruction is -126 to + 129
bytes.

Flags: No flags affected

Exceptions: None

Addressing
Mode

RA:

Syntax

DJNZ addr

Instruction Format

00 010 000 dlsp

Example: DJNZ 1050H

Before instruction execution: ' After instruction execution:

B: 1 2 B: 1 1
PC: 1 0 7 6 PC: 1 O 5 0

5 - 4 3

El
Enable Interrupt

El mask Mask = Hex value between 0 and 7Fh

Operation: If mask(i) = 1 then M S R (i) 1
J

The designated control bits in the Master Status register (MSR) are set to 1, thus enabl­
ing interrupts on these inputs; all other interrupt enables in the MSR are unaffected.
Note that during the execution of this instruction and the following instruction, all
maskable interrupts (whether previously enabled or not) are automatically disabled for
the duration of these two instructions.
Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i. If no mask is present, all interrupts are enabled.

Flags: No flags affected
.

• » i

Exceptions: Privileged Instruction •

Addressing -
•

e

Mode Syntax Instruction Format

El 11 111 011 •

El mask 11 101 101 01 1111111 I mask

Mask = byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i;
. mask(7) must be zero.

Example El 49H

Before instruction execution: After instruction execution:

MSR 0 0 0 0 MSR: 0 0 4 9

*

A

5 - 4 4

I EX
Exchange Accumulator/Flag with Alternate Bank

EX AF.AF'

Operation: AF ***• AF'

The control bit mapping the accumulator and flag registers into the primary bank or the
auxiliary bank is complemented, thus effectively exchanging the accumulator and flag
registers between the two banks.

Flags: Loaded from F'

Exceptions: None

Addressing
Mode

Example:

»
i

Syntax Instmction Format

EX AF.AF' 00 001 000

/

EX AF.AF'
%

Before instruction execution:

AF: 2 3 F 3

LL< 1 0 B 0

After instruction execution:

AF: 1 0 B 0
AF': 2 3 F 3

5 - 4 5

/
♦

Exchange Addressing Register with Top of Stack

EX (SP),dst dst = HL, IX, IY

%

Operation: (SP) dst
i

The contents of the destination register are exchanged with the contents of the top of
stack. That is, the low-order byte contained in the register is exchanged with the con­
tents of the memory address specified by the Stack Pointer (SP), and the high-order byte
of the register is exchanged with the contents of the next highest memory address
(SP +

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax

EX (SP),HL
EX (SP),XY

Instruction Format

11 100 011

11 ♦11 101 11 100 011

Field Encoding: ♦ : o for ix, 1 for iy

Example: EX (SP),Hi-
Before instruction execution: After instruction execution:

HL 2 1 9 3 HL B 3 2 A
SP: 8 2 0 0 SP: 8 2 0 0

f

Data memory:
\

Data memory:
»

•

8200: 2 A 8200: 9 3
8201: B 3 8201:

i
2 1

I

\

5 - 4 6

EX
Exchange H and L

EX H,L

Operation: H ** L

Flags:

Exceptions:

Addressing
Mode

Example:

The contents of the H and L registers are exchanged.

No flags affected

None

Syntax instruction Format

EX H,L 11 101 101 11 101 111

EX H.L

Before instruction execution: After instruction execution:

HL: HL:

5 - 4 7

EX
Exchange H and L

EX H,L

Operation: H **■ L

Flags:

Exceptions

Addressing
Mode

Example:

The contents of the H and L registers are exchanged.

No flags affected

None

Syntax

EX H,L

EX H,L

Instruction Format

11 101 101 11 101 111

Before instruction execution:

HL:

After instruction execution:

HL:

5 - 4 7

EX
Exchange HL with Addressing Register

EX src.HL src = DE, IX, IY

Operation: src ^ HL

The contents of the HL register are exchanged with the contents of the source.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax

EX DE.HL

EX XY.HL

Instruction Format

11 101 011

11 ¢11 101 11 101 011

Field Encoding: ¢: o for ix, 1 for iy

Example: EX DE,HL
Before instruction execution: After instruction execution:

DE:
HL:

8 2 E 0 DE: 3 8 F F
3 8 F F HL: 8 2 E 0

5 - 4 8

43

EX A,src src = R, RX, IR, DA, X, SX, RA, SR, BX

Operation: src **• A
*

✓

The contents of the accumulator are exchanged with the contents of the source.

EX
Exchange with Accumulator

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax

R: EX A,R

RX: EX A,RX
* * ' .1 »

IR: EX A,(HL)

DA EX A.(addr)

X: EX A,(XX + dd)

SX: EX A,(XY + d)

RA EX A,<addr>

SR: EX A,(SP + dd)

BX: EX A,(XXA + XXB)

Instruction Form at

11 101 101 00 r 111

11 <t>11 101 11 101 101 00 rx 111

11 101 101 00 110 111

11 011 101 11 101 101 00 111 111 addr(low) addr(high)

11 111 101 11 101 101 00 XX 111 d(low) d(high)

11 <1)11 101 11 101 101 00 110 111 d

11 111 101 11 101 101 00 000 111 disp(low) disp(high)

11 011 101 11 101 101 00 000 111 d(low) d(hlgh)

11 011 101 11 101 101 00 bx 111

Field Encodings: <t>:
rx :
xx :
b x:

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL -f IX), 010 for (HL 4- IY), 011 for (IX + IY)

i

Example: EX A,B
Before instruction execution: After instruction execution:

A: 0 3 A: 8 2
B: 8 2 B: 0 3

5 - 4 9

EXTS
Extend Sign (Byte)

EXTS [A]

O p era tio n : L * - A
If A(7) = 0, then H * - 00 else H <- FF

The contents of the accumulator, considered as a signed, twos-complement integer, are
sign-extended to 16 bits and the result is stored in the HL register. The contents of the
accumulator are unaffected. This instruction is useful for conversion of short signed
operands to longer signed operands.

F lags: No flags affected

E xcep tio n s: None

Addressing
Mode Syntax Instruction Format

EXTS A 11 101 101 01 100 100

E xam ple: EXTS A

Before instruction execution: After instruction execution:

A: 8 2 A: • 2

HL: 5 5 5 5 HL: F F 8 2

/ » y

i

5 - 5 0

EXTS
Extend Sign (Word)

EXTS HL

Operation: If H(7) = 0, then DE * - 0000 else DE FFFF

The contents of the HL register, considered as a signed, twos-complement integer, are
sign-extended to 32 bits and the result is stored in the DE and HL registers, with the DE
register containing the most significant bits. This instruction is useful for conversion of
signed operands to larger signed operands.

Flags: No flags affected

Exceptions: None

Addressing
Mode . Syntax Instruction Form at

EXTS HL 11 101 101 01 101 100

Example: EXTS HL

Before instruction execution: After instruction execution:

DE:

HL:

0

E

3

F

2

3

F

0

DE:

HL:

F

E

F

F

F

3

F

0

I

EXX
Exchange Byte/Word Registers with Alternate Bank

EXX

Operation: BC BC'
DE * + DE'
HL HL'

The control bit mapping the byte/word registers into the primary or auxiliary bank of the
CPU registers is complemented, thus effectively exchanging the B, C, D, E, H, and L
registers between the two banks.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

EXX 11 011 001

Example: EXX «

Before instruction execution: After instruction execution:

BC: 2 3 A 0 BC: 3 8 0 F
DE: 1 6 5 3 DE: E 2 0 0
HL: 2 4 F F HL: 1 F A 3

BC': 3 8 0 F BC': 2 3 A 0
DE': E 2 0 0 DE': 1 6 5 3
HL': 1 F A 3 HL': 2 4 F F

5 - 5 2

HALT
HALT

Operation:

HALT

CPU Halts

The CPU operation is suspended until an interrupt or reset request is received. This in­
struction is used to synchronize the Z280 MPU with external events, preserving its state
until an interrupt or reset request is accepted. After an interrupt is serviced, the instruc­
tion following HALT is executed. While halted, memory refresh cycles still occur, and bus
requests are honored.

For the Z80 Bus configuration of the Z280 MPU, the HALT signal is asserted when the
Halt instruction is executed and remains asserted until an interrupt or reset request is
accepted. For the Z-BUS configurations of the Z280 MPU, a special Halt bus transaction is
performed when the halt instruction is executed.

If the Breakpoint-on-Halt control bit in the Master Status register is set to 1 , the Halt
instruction is not executed, and Breakpoint-on-Halt trap is taken instead. '

Flags: No flags affected

Exceptions: Breakpoint, Privileged Instruction

Addressing
Mode Syntax Instruction Format

HALT 01 110 110

5 - 5 3

IM
Interrupt Mode Select

IM p P = 0, 1,2, 3

Operation: Interrupt Mode p

The interrupt mode of operation is set to one of four modes (see Chapter 6 for a descrip­
tion of the various modes for responding to interrupts). The current interrupt mode can
be read from the Interrupt Status register.

F lags: No flags affected

E xcep tio n s: Privileged Instruction
l

Addressing
Mode Syntax Instruction Format

IM p 11 101 101 01 t 110
I

/

P t
mode encoding

0 000
1 010
2 011
3 001

E xam ple: IM 3

Before instruction execution: After instruction execution:

Interrupt Status register: - - Interrupt Status register:

F 0 O O
............ - ■

F 3 0 0

5 - 5 4

IN
Input

IN dst,(C) dst = R, RX, DA, X, RA, SR, BX

Operation: dst (C)

The byte of data from the selected peripheral is loaded into the destination. During the I/O
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines A 8 -A 15 and the
contents of the I/O Page register are placed on address lines A 16-A23 . The byte of data from
the peripheral is then loaded into the destination.

Flags: S: Set if the input data is negative; cleared otherwise
Z: Set if the input data is zero; cleared otherwise
H: Cleared
V: Set if the input data has even parity; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax

R IN R,(C)
RX IN RX,(C)

DA IN (addr),(C)

X IN (XX + dd),(C)

RA IN <addr>,(C)

SR IN (SP + dd),(C)

BX IN

OCO5+

Instruction Form at

11 101 101 01 r 000

11 <J>11 101 11 101 101 01 rx 000

11 011 101 11 101 101 01 111 000 addr(low) addr(high)

11 111 101 11 101 101 01 XX 000 d(low) d(high)

11 111 101 11 101 101 01 000 000 disp(low) disp(high)

11 011 101 11 101 101 01 000 000 d(low) d(high)

11 011 101 11 101 101 01 bx 000

Field Encodings: <l>:
rx :
xx :
bx :

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

V#

Example: IN L,(C)

Before instruction execution: After instruction execution:

F: szxhxvnc F: 00x0x00c
BC: 1 6 5 0 BC: 1 6 5 0
HL: 0 0 2 3 HL: 0 0 7 6

I/O Page register:

1 1

Byte 76h available at I/O port 111 650h

5- 55

IN
Input Accumulator

IN A,(n)

Operation: A (n)

The byte of data from the selected peripheral is loaded into the accumulator. During the
I/O transaction, the 8 -bit peripheral address from the instruction is placed on the low
byte of the address bus, the contents of the accum ulator are placed on address lines
A 8 - A 15 and the contents of the I/O Page register are placed on address lines A 1 6 - A 2 3 .
The byte of data from the selected port is written into the accumulator.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax

IN A,(n)

Instruction Format

11 011 011 n

Example: IN A,(6 6 H)

Before instruction execution: After instruction execution:

4 2 F D

I/O Page register:

1 1

Byte FDh available at I/O port 11 4266 h

5 - 5 6

Increment (Byte)

INC dst dst = R, RX, IR, DA, X, SX, RA, SR, BX

Operation: dst ♦ - dst + 1

The destination operand is incremented by one and the sum is stored in the destination.
Twos-complement addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 7 Fh ; cleared

otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax

R INC R

RX INC RX

IR INC (HL)

DA INC (addr)

X INC (XX + dd)

SX INC (XY + d)

RA INC <addr>

SR INC (SP + dd)

BX INC (XXA + XXB)

Instruction Format

00 r 100

11 <D 11 101

00 110 100

f i i 011 101 00 111
I

100 addr(low) addr(high)

h * 1 111 101 00 XX 100 d(low) d<hlgh)

11 ¢11 101 00 110 100 d

11 111 101 00 E 3 100 disp(low)
I

disp(high)

11 011 101 00 ooo1100 d(low) I d(high)

h i 1011 1101 I loo bx 1100 |

Field Encodings: <D :
rx:
xx :
b x:

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL -F dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

. - ” « ..

Example: INC (HL)

Before instruction execution:

F:
HL:

Data memory:

After instruction execution:

szxhxvnc
2 4 5 4

F:
HL:

10x0x00c
2 4 5 4

Data memory:

2454: 2454:

INC[W]
Increment (Word)

INC[W] dst dst = R
or
INCW dst dst = IR, DA, X, RA

Operation: dst ^ dst + 1

The destination operand is incremented by one. Twos-complement addition is performed.

Flags: No flags affected

Exceptions: None

Addressing
M ode Syntax

R: INCW RR

INCW XY

IR: INCW (HL)

DA: INCW (addr)

X: INCW (XY + dd)

RA: INCW <addr>

instruction Format

00 rr 011

11 <t>11 101 00 100 011

Ln 011 101 00 011LZJ
11 011 101 00 010 011 addr(low) addr(high)

11 111 101 00 xy 011 d(low) d(high)

11 011 101 00 110 011 disp(low) disp(high)

Field Encodings: <t>: o for ix, 1 for iy

rr : > 000 for BC, 010 for DE, 100 for HL, 110 for SP
xy: 000 for (IX + dd), 010 for (IY + dd)

Example: INCW BC
Before instruction execution: After instruction execution:

3 F 1 2 BC: 3 F 1 3

5 - 5 8

IND
Input and Decrement (Byte, Word)

IND
INDW

Operation: (HL)«-(C)
B « - B - 1
HL — AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines A q - A ^ s , and the contents of the
I/O Page register are placed on address lines A-16-A 23. The byte or word of data from
the selected peripheral is then loaded into the memory location addressed by the HL
register. The HL register is then decremented by one for byte transfers or by two for
word transfers, thus moving the memory pointer to the next destination for the input. The
B register, used as a counter, is then decremented by one.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

IND 11 101 101 10 101 010

INDW 11 101 101 10 001 010

Example: INDW

Before instruction execution: After instruction execution:

F: szxhxvnc F: sOxhxvlc
BC: 1 5 6 4 BC: 1 4 6 4
HL: 5 0 0 2 HL: 5 0 0 0

I/O Page register: Data memory:

3 3 5002: 0 7
5003: 8 D

Word 8D07h available at I/O port 331564H

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5 -

INDR
Input, Decrement and Repeat (Byte, Word)

INDR
INDRW

Operation: Repeat until B = 0 : (HL) (C)
B — B - 1
HL AUTODECREM ENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines A q-A - is , and the contents of the
I/O Page register are placed on address lines A 1 6 - A 2 3 . The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then decrem ented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decrem ented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains 0 at the start of the execution of this in­
struction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Progranr
Counter value of the start of this instruction is saved before the interrupt request is accepted
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

INDR

INDRW
11 101 101 10 111 010

11 101 101 10 011 010

5 - 6 0

Example: INDR

Before instruction execution:

F

BC

HL

I/O Page register:

then byte 3BH available at
I/O port 170246Hi

then byte FFH available at
I/O port 1701 46h.

After instruction execution:

szxhxvnc

0 3 4 6

5 2 1 8

F:

BC:

HL:

0 0

5 2

Data memory:

s lxh xvlc

1 7 5216: F F

5217: 3 B
Byte 9Ah available at

I/O port 170346h, 5218: 9 A

4 6

1 5

\

INI
Input and Increment (Byte, Word)

INI
INIW

Operation: (H L) (C)
B — B - 1
HL AUTOINCREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ae-A-is, and the contents of the
I/O Page register are placed on address lines A16-A 23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

INI 11 101 101 10 100 010

INIW 11 101 101 10 000 010

Example: INI

Before instruction execution: After instruction execution:

F: szxhxvnc F: sOxhxvlc
BC: 1 5 % 4 BC: 1 4 6 4
HL: 5 0 0 2 HL: 5 0 0 3

I/O Page register: Data memory:

3 3 5002: 7 A

Byte 7Ah available at

I/O port 331 564h

m

5 - 6 2

INIR
Input, Increment and Repeat

INIR
INIRW

Operation: Repeat until B = 0: (HL) ♦ - (C)
B ■*- B — 1
HL AUTO INCREM ENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and increasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines A q-A - is , and the contents of the
I/O Page register are placed on address lines A-16- A 2 3 . The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decrem ented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains 0 at the start of the execution of this in­
struction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

INIR 11 101 101 10 110 010
INIRW 11 101 101 10 010 010

5 - 6 3

Example: INIRW

Before instruction execution: After instruction execution:

F: szxhxvnc F: s lxhxvlc

BC: 0 2 5 5 BC: 0 0 5 5
HL: 4 0 0 2 HL: 4 0 0 6

I/O Page register: Data memory:

3 1 4002: D 7
4003: 6 6

Word 6 6 D 7 h available at 4004: F F
I/O port 31 0 2 5 5 h 4005: A 8

then word A8FFh available
at I/O port 3101 55h -

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5 - 6 4

IN[W]
Input HL

IN[W] HL,(C)

Operation: HL (C)

The word of data from the selected peripheral is loaded into the HL register. During the
I/O transaction, the 8 -bit peripheral address from the C register is placed on the low byte
of the address bus, the contents of the B register are placed on address lines A q-A - is
and the contents of the I/O Page register are placed on address lines A 1 6 - A 2 3 . Then one
word of data from the selected port is written into the HL register. For 8 -bit data buses,
the contents of L are undefined for external peripherals.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

IN HL,(C) 11 101 101 10 110 111

Example: INW HL,(C)

Before instruction execution: After instruction execution:

BC: 2 6 5 0 BC: 2 6 5 0

HL: 3 3 3 3 HL: 8 7 4 D

I/O Page register:

1 0

Word 4D87h available at I/O port 1 02650h

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5 - 6 5

JAF
Jump On Auxiliary Accumulator/Flag

JAF dst dst = RA

Operation: If auxiliary AF then PC ♦ - dst

A conditional jump is performed if the auxiliary Accumulator/Flag registers are in use. If
the jump is taken, the Program Counter is loaded with the destination address; otherwise
the instruction following the JAF instruction is executed. This instruction employs an 8-bit
signed, twos-complement displacement from the Program Counter to permit jumps
within the range —125 to + 1 3 0 bytes from the location of this instruction.

Flags: No flags affected

Exceptions: None

Addressing
Mode

RA:

Syntax

JAF addr

Instruction Format

11 011 101 00 101 000 disp

Example: JAF 5000H

Before instruction execution: After instruction execution:

Auxiliary Accumulator/Flag in use

4 F E 6 PC: 5 0 0 0

5 - 6 6

r~

JAR
Jump On Auxiliary Register File In Use

JAR dst

Operation: If auxiliary file then PC + - dst

A conditional jump is performed if the auxiliary register file is in use. If the jump is taken,
the Program Counter is loaded with the destination address; otherwise the instruction
following the JAR instruction is executed. This instruction employs an 8-bit signed, twos-
com plem ent displacement from the Program Counter to permit jumps within the range
- 1 2 5 to + 1 3 0 bytes from the location of this instruction.

Flags: No flags affected

Exceptions: None

Addressing
Mode

RA:

Syntax

JAR addr

Instruction Format

11 011 101 00 100 000 disp

Example: JAR 42D 0H

Before instruction execution: After instruction execution:

Auxiliary file in use

4 2 F 6 4 2 D 0

5 - 6 7

JP
Jump

JP [cc,]dst dst = IR, DA, RA

Operation: If cc is satisfied then PC * - dst

A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “c c ” specified in the instruction; an uncondi­
tional jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump instruction is executed. For the Relative Address mode, the PC value
used to calculate the destination address is the address of the next instruction following
the Jump instruction; a 16-bit signed twos-complement displacement from the PC per­
mits jumps within the range -3 2 7 6 4 to +32771 bytes from the location of this instruc­
tion.

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a jump
performed conditionally on the setting of the flag.

When using DA mode with the JP instruction, the operand is not enclosed in paren­
theses.

« •

Flags: No flags affected

Exceptions: None

Addressing
M ode Syntax Instruction Format

IR: JP CC.(HL)

JP (HL)

JP (XY)
DA: JP CC.addr

JP
•a

addr .
RA: JP CC,<addr>

JP <addr>

11 011 101 11 CC 010

11 101 001

11 ¢11 101 11 101 001

11 CC 010 addr(low) addr(high)

11 000 011 addr(low) addr(high)

11 in 101 11 CC 010 disp(low) disp(high)

11 111 101 11 000 011 disp(low) disp(high)

((unconditional jump”

“unconditional jump”

“unconditional jump”

“unconditional jump”

Field Encodings:

Example:

<t>: 0 for IX, 1 for IY
cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,

110 for P or NS, 111 for M or S

JP C,5000H

Before instruction execution: After instruction execution:

F: szxhxvnl F: szxhxvnl
PC: 2 6 8 4 PC: 5 0 0 0

5 - 6 8

JR [cc jdst dst = RA

JR
Jump Relative

Operation: If the cc is satisfied then PC dst

A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code “ c c ” specified in the instruction; an uncondi­
tional jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump Relative instruction is executed. These instructions employ an 8-bit
signed, twos-complement displacement from the PC to permit jumps within the range
- 1 2 6 to + 1 2 9 bytes from the location of this instruction.

Either the Zero or Carry flag can be tested and a jump performed conditionally on the
setting of the flag.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax

RA: JR CC.addr

JR addr

Instruction Format

00 CC 000 disp

00 011 000 disp “unconditional jump”

Field Encoding: cc : 100 for NZ, 101 for Z, 110 for NC, 111 for c

Example:. JR NZ,6000H

Before instruction execution: After instruction execution:

F: sOxhxvnc F: sOxhxvnc
PC: 5 F D 4 PC: 6 0 0 0

/

LD
Load Accumulator

LD dst,src dst = R, RX, IR, DA, X, SX, RA, SR, BX
src = A

or
dst = A
src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: d s t s r c

* > -j,.

The contents of the source are loaded into the destination. The contents of the source
are not affected. Special instructions are provided so that the BC and DE registers can
also be used in the IR addressing mode.

Flags: No flags affected
* » *

Exceptions:
#

None
•

Load into Accumulator
Addressing

Mode Syntax Instruction Format

R: LD A,R
RX: LD A,RX

IM: LD A,n

IR: LD A,(HL)

LD A,(RR)

DA: LD A,(addr)

X: LD A,(XX + dd)
<* ̂ j

t h r • «• - '•

SX: LD A,(XY + d)
RA: LD A,<addr>

SR: LD A,(SP + dd)
BX: LD A,(XXA + XXB)

01 111

11 011 101 01 111 rx

00 in 110 ____* _____ I
01 i n 110

00 rra 010

00 111 010 addr(low) addr(high)

11 011 101 01 111 bx

11 111 101 01 111 xxa d(low) d(high)

11 ¢11 101 01 111 110 d

11 m 101 01 111 000 disp(low) disp(high)

11 011 101 01 111 000 d(low) d(high)

5 - 70

Load from Accumulator
Addressing

Mode Syntax

R: LD R,A

RX: LD RX,A

IR: LD (HL),A

LD (RR),A

DA LD (addr),A

X: LD (XX + dd),A

SX: LD (XY + d),A

RA ld <addr>,A

SR: LD• (SP + dd),A

BX: LD (XXA + XXB),A

Instruction Format

01 r m

11 «*»11 101 01 rx 111

01 110 111

00 rrb 010
/

00 110 010 addr(low) addr(high)

11 101 101 00 xxb 011 d(low) d(high)

11 «11 101 01 110 111 d

11 101 101 00 100 011 disp(low) disp(high)

11 101 101 00 000 011 d(low) d(high)

11 101 101 00 bx 011

V*

Field Encodings:
<

0 : 0 for IX, 1 for IY
rx : 100 for high byte, 101 for low byte

, t- >
rra : 001 for BC, 011 for DE
rrb : 000 for BC, 010 for DE
xxa : 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
xxb: 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)

bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX “1“ IY)

Examples: LD A ,(H L)

Before instruction execution: After instruction execution:

A: 0 F A: 0 B
HL: 1 7 0 C HL: 1 7 0 C

Data memory: Data memory:

170C: 0 B 170C: 0 B

5- 71

LD
Load from I or R Register

LD A,src src = I, R

Operation: A *«- src

The contents of the source are loaded into the accumulator. The contents of the source
are not affected. The Sign and Zero flags are set according to the value of the data
transferred; the Overflow flag is set according to the state of the Interrupt A Enable bit in
the Master Status register. Note: The R register does not contain the refresh address
and is not modified by refresh transactions.

Flags: S: Set if the data loaded into the accumulator is negative; cleared otherwise
Z: Set if the data loaded into the accumulator is zero; cleared otherwise
H: Cleared
V: Set when loading the accumulator if the interrupt A Enable bit is set; cleared

otherwise
N: Cleared
C: Unaffected

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

LD A, I

LD A,R

11 101 101 01 010 111

11 101 101 01 011 111

Example: LD A,R

Before instruction execution: After instruction execution:

AF:
R:

MSR:

1 0 szxhxvnc
4 2

4 0 7 F

AF:
R:

MSR:

4 2 00x0x10c
4 2

4 0 7 F

5 - 7 2

LD
Load Immediate (Byte)

LD dst,n dst = R, RX, IR, DA, X, SX, RA, SR, BX

Operation: dst * - n

The byte of immediate data is loaded into the destination.

Flags: No flags affected

Exceptions: . None

Addressing
Mode Syntax Instruction Format

R:
RX:
IR:

DA:
X:

SX:
RA:
SR:
BX:

LD R,n

LD RX,n

LD (HL),n

LD (addr),n

LD (XX + dd),n

LD (XY + d),n

LD <addr>,n

LD (SP + dd),n

LD (XXA + XXB),n

00 r 110 n f

11 ¢11 101 00 rx 110 n

00 110 110 n

11 011 101 00 111 110 addr(low) addr(high)

11 111 101 00 XX 110 d(low) d(high)

11 ¢11 101 00 110 110 d n

11 111 101 00 000 110 disp(low) disp(high)

11 011 101 00 000 110 d(low) d(high)

11 011 101 00 bx 110 n

i. ' t ̂ ^

n

n

Field Encodings: 0 : 0 tor ix, 1 tor iy

rx : 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: LD A.55H
Before instruction execution: After instruction execution:

6 7 5 5

5 - 7 3

LD
Load Register (Byte)

LD dst,src

Operation: dst src

dst = R
src = R, RX, iM, IR, SX

or
dst = R, RX, IR, SX
src = R

The contents of the source are loaded into the destination

Flags: No flags affected

Exceptions: None

Load into Register
Addressing

Mode Syntax Instruction Format
#

R: LD R1,R2

RX: LD R*,RX

LD RXA, RXB
LD RX,R*

IM: LD R,n

LD RX,n

IR: LD R,(HL)

SX: LD R,(XY + d)

01 r1 r2

11 ¢11 101 01 r* rx

11 ¢11 101 01 rxa rxb

11 ¢11 101 01 rx r*

00 r 110 n

11 ¢11 101 00 rx 110 . I
01 r 110

11 <t>11 101 01 r 110 d

:«• •» •• •«••*** *• 'u..«

Load from Register
IR: LD (HL),R 01 110 r

SX: LD (XY + d),R 11 ¢11 101 01 110 r d

Field Encodings: <t>: 0 for IX, 1 for IY
rx : 100 for high byte, 101 for low byte

rxa : 100 for high byte, 101 for low byte
rxb : 100 for high byte, 101 for low byte

rxa and rxb refer to the same index register
r* : Only registers A, B, C, D, and E can be accessed

r1,r2 : See Table 5-12

Example: LD A,B

Before instruction execution: After instruction execution:

A: 0 3 A: 8 2
B: 8 2 B: 8

2 I
5 - 7 4

LD
Load to I or R Register

LD dst,A dst = I, R

Operation: dst A

The contents of the accumulator are loaded into the destination. Note: the R register
does not contain the refresh address and is not modified by refresh transactions.

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing
Mode Syntax

LD I,A

LD R,A

Instruction Format

11 101 101 01 000 111

11 101 101 01 001 111

Example: LD I,A

Before instruction execution: After instruction execution:

A: 0 D A: 0 D
I: 2 2 I: 0 D

LDA
Load Address

LDA dst.src dst = HL, IX, IY
src = DA, X, RA, SR, BX

Operation: dst + - address(src)

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The address translation mechanism in the MMU
is not used to determine if the address is valid.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax

DA: LDA HL,(addr)
' LDA XY,(addr)

X: LDA HL,(XX + dd)

LDA XY,(XX + dd)
RA: LDA HL,<addr>

LDA XY,<addr>

SR: LDA HL,(SP + dd)

LDA XY,(SP + dd)
BX: LDA HL,(XXA + XXB)

LDA XY,(XXA + XXB)

Instruction Format

00 100 001

11 <D11 101

11 101 101

11 <D11 101

11 101 101

11 <M1 101

11 101 101

11 <M1 101

11 101 101

11 ¢11 101

oo

TT
bx

ToT

010

ToT oo bx 010

addr(low) addr(high)

00 100 001 addr(low) addr(high)

00 XX 010 d(low) d(high)

11 101 101 00 xx 010 d(low)

00 100 010 disp(low) disp(high)

11 101 101 00 100 010 disp(low)

00 000 010 d(low) d(high)

11 101 101 00 000 010 d(low)

d(high)

disp(high)

d(high)

Field Encodings: ¢: o for ix. 1 for iy

X X : 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
bx : 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: LDA HL,(IX + 4)
Before instruction execution: After instruction execution:

HL: 2 3 0 8 HL: E 3 2 8
IX: E 3 2 4 IX: E 3 2 4

Address calculation:

E324
+____4

E328

5 - 7 6

LDCTL
Load Control

LDCTL dst,src dst = (C), USP
src = HL, IX, IY

or
dst = HL, IX, IY
src = (C), USP

Operation: dst src

This instruction loads the contents of a CPU control register into an addressing register,
or the contents of an addressing register into a CPU control register. The contents of the
source are loaded into the destination; the source register is unaffected. The address of
the control register is specified by the contents of the C register, with the exception of
the User Stack Pointer. The various CPU control registers have the following addresses:

Register
Address

(Hexadecimal)

Master Status register (MSR) 00
Interrupt Status register 16
Interrupt/Trap Vector Table Pointer 06
I/O Page register * 08
Bus Timing and Initialization register * FF
Bus Timing and Control register * 02
Stack Limit register 04
Trap Control register * 10
Cache Control register * 12
Local Address register * 14
* 8-bit control register

When writing to an 8-bit CPU control register, only the low-order byte of the specified
source addressing register is written to the control register. When reading from an 8-bit
CPU control register, the control register contents are loaded into the low-order byte of
the destination addressing register, and the upper byte of the destination is undefined.
Note that the User Stack Pointer control register is accessed using special opcodes; the
contents of the C register are not used for these opcodes. This form of the Load Control
instruction allows the user-mode Stack Pointer to be accessed while in system-mode
operation.

Flags: No flags affected

Exceptions: Privileged Instruction

*

5 - 7 7

Addressing
Mode Syntax Instruction Format

LDCTL HL,(C)

LDCTL XY,(C)

LDCTL (C),HL

LDCTL (C),XY

LDCTL HL,USP

LDCTL XY.USP

LDCTL USRHL

LDCTL USP.XY

11 101 101 01 100 110

11 ¢) 11 101 11 101 101 01 100 110

11 101 101 01 101 110

11 ¢11 101 11 101 101 01 101 110

11 101 101 10 000 111

11 ¢11 101 11 101 101 10 000 111

11 101 101 10 001 111

11 ¢11 101 11 101 101 10 001 111

Field Encoding:

Example:

<&: 0 for IX, 1 for IY

LDCTL (C),HL
Before instruction execution: After instruction execution:

C: 0 0 C: 0 8
HL: 5 5 3 A HL: 5 5 3 A

I/O Page register: I/O Page register:

0 0 3 A

5 - 7 8

LDD
Load and Decrement

LDD

Operation: (DE) (HL)
DE DE - 1
HL HL - 1
BC BC - 1

This instruction is used for block transfers of strings of data. The byte of data at the loca­
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then decremented by one, thus moving the
pointers to the preceding elements in the string. The BC register, used as a counter, is
then decremented by one.

Flags: S: Unaffected
Z: Unaffected
H: Cleared . . . ,
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax

LDD

Instruction Format

11 101 101 10 101 000

Example: LDD

Before instruction execution: After instruction execution:

F: szxhxvnc F: szxOxOOc
HL: 1 1 1 1 HL: 1 1 1 0
DE: 2 2 2 2 DE: 2 2 2 1
BC: 0 0 0 7 BC: 0 0 0 6

Data memory: Data memory:

1111: 8 8 1111: 8 8
2222: 6 6 2222: 8 8

5 - 7 9

LDDR
Load, Decrement and Repeat

Operation:

Flags:

LDDR

Repeat until BC = 0: (DE) (HL)
DE DE - 1
HL HL - 1
BC BC — 1

This instruction is used for block transfers of strings of data. The bytes of data starting at the
location addressed by HL are loaded into memory starting at the location addressed by
the DE register. The number of bytes moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65 ,536 bytes are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
pointers ensures that the source string is copied without destroying the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Pro­
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode

Example:

Syntax Instruction Format

LDDR

LDDR

11 101 101 10 111 000

Before instruction execution: After instruction execution:

F: szxhxvnc F: szxOxOOc

HL: 1 1 1 7 HL: 1 1 1 4

DE: 2 2 2 5 D E 2 2 2 2

BC: 0 0 0 3 BC: 0 0 0 0

Data memory: Data memory:

1115: 8 8 1115: 8 8
1116: 3 6 1116: 3 8
1117: A 5 1117: A 5

2223

2224

2225

2223

2224

2225

8 8 *

3 6

A 5

5 - 8 0

LDI
Load and Increment

LDI

Operation: (DE) ■«- (HL)
DE DE + 1
HL ^ HL + 1
BC •*“ BC — 1

Flags:

. *' * oV . • • (i

This instruction is used for block transfers of strings of data. The byte of data at the loca­
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then incremented by one, thus moving the
pointers to the next elements in the strings. The BC register, used as a counter, is then
decrem ented by one.

S: Unaffected
Z: Unaffected
H: Cleared - • .-
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected

V.V-’ >■* I..' V V•-

Exceptions: None

Addressing
Mode Syntax Instruction Format

LDI 11 101 101 10 100 000

Example: LDI
t

Before instruction execution: After instruction execution:

F: szxhxvnc F: szxOxOOc
HL: 1 1 1 1 HL: 1 1 1 2
DE: 2 2 2 2 DE: 2 2 2 3
BC: 0 0 0 7 BC: 8 0 0 6

Data memory: Data memory:

1111: 8 8 1111: 8 8
2222: 6 6 2222: 8 8

5-81

LDIR
Load, Increment and Repeat

LDIR

Operation: Repeat until BC = 0: (DE) *- (HL)
DE <«- DE + 1
HL ^ HL + 1
BC BC - 1

This instruction is used for block transfers of strings of data. The bytes of data starting at
the location addressed by the HL register are loaded into memory starting at the location
addressed by the DE register. The number of bytes moved is determined by the contents
of the BC register. If the BC register contains zero when this instruction is executed,
65,536 bytes are transferred. The effect of incrementing the pointers during the transfer
is important if the source and destination strings overlap with the source string starting
at a higher memory address. Placing the pointers at the lowest address of the strings
and incrementing the pointers ensures that the source string is copied without destroy­
ing the overlapping area.

This instruction can be interrupted after each execution of the basic operation. The Pro­
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax

LDIR

Instruction Format

11 101 101 10 110 000

■\ ̂*

at

5 - 8 2

Example: LDIR

Before instruction execution: After instruction execution:

F: szxhxvnc F: szxOxOOc
HL: 1 1 2 5 HL 1 1 00CMI■

-___

DE: 2 2 1 0 DE: 2 2 1 3
BC: 0 0 0 3 BC: 0 0 ! 0 0

Data memory: Data memory:

1125: 5 A 1125: 5 A
1126: B 0 1126:

>> V

B 0
1127: 7 6 1127: r e l

2210: F F 2210: 5 A
2211: 9 A 2211: B 0
2212: 2 7 2212: 7 6

LDUD
Load in User Data Space (Byte)

LDUD dst,src dst = A
src = IR or SX in user data space

- or
dst = IR or SX in user data space
src = A

Operation: dst ■*- src

Flags:

■» » m

The destination is loaded with the contents of the source. In loading from the user data
space into the accumulator, the memory-mapping mechanism used in translating logical
addresses for data in user mode operation is used to translate the source address. In
loading into the user data space from the accumulator, the memory-mapping mechanism
used in translating logical addresses for data in user-mode operation is used to translate
the destination address. See Chapter 7 for an explanation of this mechanism. The con­
tents of the source are unaffected.
The flags are set to reflect the success or failure of the transfer. If the transfer is un­
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared to 0; if the transfer is unsuccessful, the Carry flag
is set to 1. The other flags are unaffected if the transfer is successful. If the transfer is
unsuccessful, the value of the Write Protect (WP) bit in the Page Descriptor register
used by the MMU is loaded into the Z flag and the value of that Page Descriptor’s Valid
bit is loaded into the V flag.

S: Unaffected
Z: For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;

unaffected otherwise
H: U naffected
V: For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;

unaffected otherwise
N: Unaffected
C: Set if the transfer is unsuccessful; cleared otherwise

Exceptions: Privileged Instruction

Load from User Data Space
Addressing

Mode Syntax Instruction Format

IR: LDUD A,(HL) 11 101 101 10 000 110
SX: LDUD A,(XY + d) 11 «M1 101 11 101 101 10 000 110

Load into User Data Space
IR: LDUD (HL),A

SX: LDUD (XY + d),A
11 101 101 10 001 110

11 ¢11 101 11 101 101 10 001 110

5 - 8 4

Field Encoding: ¢: o for ix, 1 for iy

Example: LDUD A,(HL)

Before instruction execution: After instruction execution:

AF: 0 F szxhxvnc AF: 5 5 szxhxvnO
HL: 8 D 0 7 HL: 8 D 0 7

User data memory: User data memory:

8D07: 8D07:

%

5 - 8 5

LDUP
Load in User Program Space (Byte)

LDUP dst,src dst = A
src = IR or SX in user program space

- or
dst = IR or SX in user program space
src = A

Operation: dst src

The destination is loaded with the contents of the source. In loading from the user pro­
gram space into the accumulator, the memory-mapping mechanism used in translating
logical addresses for program fetches (instructions or data using PC Relative adddress­
ing mode) in user-mode operation is used to translate the source address. When loading
into the user program space from the accumulator, the memory-mapping mechanism
used in translating logical addresses for program accesses (instructions or data using
PC Relative addressing mode) in user-mode operation is used to translate the destination
address. See Chapter 7 for an explanation of this mechanism. The contents of the
source are unaffected.
The flags are set to reflect the success or failure of the transfer. If the transfer is un­
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared; if the transfer is unsuccessful, the Carry flag is
set. The other flags are unaffected if the transfer is successful. If the transfer is unsuc­
cessful, the value of the Write Protect (WP) bit in the Page Descriptor register used by
the MMU is loaded into the Z flag and the value of that Page Descriptor’s Valid bit is
loaded into the V flag.

Flags: S: Unaffected
Z: For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;

unaffected otherwise
H: Unaffected
V: For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;

unaffected otherwise
N: Unaffected
C: Set if the transfer is unsuccessful; cleared otherwise

Exceptions: Privileged Instruction

Load from User Program Space
Addressing

Mode Syntax

IR: LDUP A,(HL)

SX: LDUP A,(XY + d)

Instruction Format

11 101 101 10 010 110

11 <D11 101 11 101 101 10 010 110

5 - 8 6
/

Load into User Program Space
Addressing

Mode Syntax Instruction Format

IR: LDUP (HL),A 11 101 101 10 011 110

SX: LDUP (XY + d),A 11 ¢11 101 11 101 101 10 011 110

Field Encoding: ¢: o for ix, 1 for iy

Example: LDUP A,(HL)
Before instruction execution: After instruction execution:

AF:
HL:

0 F szxhxvnc AF: F F szxhxvnO
5 3 9 0 HL: 5 3 9 0

User program memory: User program memory:

5390: 5390:

5 - 8 7

LDW
Load Immediate Word

LD[W] dst.nn
or
LDW dst.nn

Operation: d s t n n

dst = R
dst = IR, DA, RA

The two bytes of immediate data are loaded into the destination. For register destina­
tions, the low byte of the immediate operand is loaded into the low byte of the register
and the high byte of the operand is loaded into the high byte of the register. For memory
destinations, the low byte of the operand is loaded into the addressed location and the
high byte of the operand is loaded into the next higher memory byte (addressed location
incremented by one).

Flags: . v No flags affected V „■ ' *. . . . “ •* ' 1 * * 1 • •* , • > >

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: LDW RR.nn

LDW XY,nn

IR: LDW (HL),nn

DA: LDW (addr),nn

RA: LDW <addr>,nn

00 rr 001 n(low) n(high)

11 011 101 00 100 001 n(low) n(high)

11 011 101 00 000 001 n(low) n(high)

11 011 101 00 01Q 001 addr(low) addrthigh)

11 011 101 00 110 001 disp(low) disp(high)

n(low) n(high)

n(low) n(high)

Field Encodings: rr : OOO for BC, 010 for DE, 100 for HL, 110 for SP
0 : 0 for IX, 1 for IY

Example: LDW (HL),3825H
Before instruction execution:

HL: 2 3 9 1

Data memory:

2391: 1 E
2392: A 3

After instruction execution:

HL: 2 3 9 1

Data memory:

2391: 2 5
2392: 3 8

t
1

5 - 8 8

LD[W]
Load Addressing Register

LD[W] dst,src dst = HL, IX, IY
src = IM, DA, X, RA, SR, BX

or
dst = DA, X, RA, SR, BX
src = HL, IX, IY

Operation: dst src

•. The contents of the source are loaded into the destination. The contents of the source
are unaffected. For register-to-memory transfers, the effective address of the memory
operand corresponds to the low byte of the register and the memory byte at the effective
address incremented by one corresponds to the high byte of the register.

Flags: No flags affected

Exceptions: None

Load into Addressing Register
Addressing

Mode Syntax

IM: LDW HL,nn

LDW XY.nn

DA: LDW HL,(addr)

LDW XY,(addr)

X: LDW HL,(XX + dd)

LDW XY,(XX + dd)

RA: LDW HL,<addr>

LDW XY,<addr>

SR: LDW HL,(SP + dd)

LDW XY,(SP + dd)

BX: LDW HL, (XXA + XXB)

LDW XY, (XXA + XXB)

Instruction Format

00 100 001 n(iow) n(high)

11 ¢11 101 00 100 001 n(low) n(high)

00 101 010 addr(low) addr(high)

11 ¢11 101 00 101 010 addr(low) addr(high)

11 101 101 00 XX 100 d(low) d(high)

11 ¢11 101 11 101 101 00 XX 100 d(low)

11 101 101 00 100 100 disp(low) disp(high)

11 ¢11 101 11 101 101 00 100 100 disp(low)

11 101 101 00 000 100 d(low) d(high)

11 ¢11 101 11 101 101 00 000 100 d(low)

11 101 101 00 bx 100

11 ¢11 101 11 101 101 00 bx 100

d(high)

disp(high)

d(high)

5 - 8 9

Load from Addressing Register
Addressing

Mode Syntax

DA: LDW (addr),HL

LDW (addr),XY

X: LDW (XX + dd),HL

LDW (XX + dd),XY

RA: LDW <addr>,HL

LDW <addr>,XY

SR: LDW (SP + dd),HL

LDW (SP + dd),XY

BX: LDW (XXA + XXB), HL

LDW (XXA + XXB), XY

Instruction Format

00 100 010 addr(low) addr(high)

11 <t>11 101 00 100 010 addr(low)

11 101 101 00 XX 101 d(low)

11 101 101 00 bx 101

addr(high)

d(high)

11 ¢11 101 11 101 101 00 XX 101 d(low)

11 101 101 00 100 101 disp(low) disp(high)

11 <D11 101 11 101 101 00 100 101 disp(low)

11 101 101 00 000 101 d(low) d(high)

11 ¢11 101 11 101 101 00 000 101 d(low) d(high)

11 4>11 101 11 101 101 00 bx 101

Field Encodings: ¢ : o for ix, 1 for iy

xx : 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
bx : 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: LDW HL,(HL + IX)
Before instruction execution: After instruction execution:

HL: 1 5 0 2 HL: 0 3 A 2
IX: F F F E IX: F F F E

Data memory: Data memory:

1500: A 2 1500: A 2
1501: 0 3 1501: 0 3

Address calculation:

1502
+ FFFE

1500

5-vo

LD[W]
Load Register Word

LD[W] dst,src dst = BC, DE, HL, SP
src = IM, IR, DA, SX

or
dst = IR, DA, SX
src = BC, DE, HL, SP

Operation: dst src

The contents of the source are loaded into the destination. The contents of the source
are unaffected. For transfers between a register and memory, the effective address of
the memory operand corresponds to the low byte of the register and the memory byte at
the effective address incremented by one corresponds to the high byte of the register.

Flags: No flags affected

Exceptions: None • V • ,- .». V * T • 7., j ? - \ > *. 1 *• ‘ • « * .—i ’ 1 - 1

Load into Register
Addressing

Mode Syntax Instruction Fonnat

IM:
IR:

SX:

LDW RR,nn

LDW RR,(HL)

LDW RR,(addr)

LDW RR,(XY + d)

00 rra 001 n(low) n(high)

11 101 101 00 rra 110

11 101 101 01 rrb 011 addr(low) addr(high)

11 011 101 11 101 101 00 rra 110 d

(except HL)

Load from Register
- - -

IR: LDW (HL),RR

DA: LDW (addr),RR
11 101 101 00 rrb 110

11 101 101 01 rra 011 addr(low) addr(high) (except HL)

SX: LDW (XY + d),RR 11 011 101 11 101 101 00 rrb 110 d

Field Encodings: rra : OOO for BC, 010 for DE, 100 for HL, 110 for SP
rrb : 001 for BC, 011 for DE, 101 for HL, 111 for SP

0 : 0 for IX, 1 for IY

Example: LDW BC.3824H
Before instruction execution: After instruction execution:

2 1 F 3 3 8 2 4

i
I

5-yt

LD[W]
Load Stack Pointer

LD[W] dst,src dst = SP
src = HL, IX, IY, IM, IR, DA, SX

or
dst = IR, DA, SX
src = SP

Operation: dst src

The contents of the source are loaded into the destination, where the source or destina­
tion is the Stack Pointer.

Flags: No flags affected

Exceptions: None

Load into Stack Pointer
Addressing

Mode Syntax

R: LDW SP.HL

LDW SP.XY
IM: LDW SP,nn

IR: LDW SP,(HL)
DA: LDW SP,(addr)

SX: LDW SP,(XY + d)

Instruction Format

11 111 001 -

11 ¢11 101 11 111 001

00 110 001
— ---

n(low) n(hlgh)

11 101 101 00 110 110

11 101 101 01 111 011 addr(low) addr(high)

11 <t>11 101 11 101 101 00 110 110 d

• ' •- ; .*

Load from Stack Pointer
IR: LDW (HL),SP

DA: LDW (addr),SP
SX: LDW (XY + d),SP

* .» ♦! *.
r s

11 101 101 00 111 110

11 101 101 01 110 011 addr(low) addr(high)

11 ¢11 101 11 101 101 00 111 110 d

Field Encoding: «i>: o for ix, 1 for iy

Example: LDW SP,IX
Before instruction execution: After instruction execution:

2 3 8 D SP: F F F 0
F F F 0 IX: F F F 0

5 - 9 2

MULT
Multiply (Byte)

MULT [A,]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: H L ^-A x src

The contents of the accumulator are multiplied by the source operand and the product is
stored in the HL register. The contents of the accumulator and the source are unaffected.
Both operands are treated as signed, twos-complement integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
' to 1 to indicate that the H register is required to represent the result; if the Carry flag is

cleared to 0, the product can be correctly represented in eight bits and the H register
merely holds sign-extension data.

Flags:

j •

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is less than - 27 or greater than or equal

to • -V *

to 27; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R

RX
IM
IR

DA
X

SX
RA
SR
BX

MULT A,R

MULT A,RX

MULT A,n

MULT A,(HL)

MULT A,(addr)

MULT A,(XX + dd)

MULT A,(XY + d)

MULT A,<addr>

MULT A,(SP + dd)

MULT A,(XXA + XXB)

11 101 101 11 000

11 <M1 101 11 101 101 11 rx 000

11 111 101 11 101 101 11 111 000 n

11 101 101 11 110 000

11 011 101 11 101 101 11 111 000 addr(low) addr(high)

11 111 101 11 101 101 11 XX 000 d(low) d(high)

11 ¢11 101 11 101 101 11 110 000 d
11 111 101 11 101 101 11 000 000 disp(low) disp(high)

11 011 101 11 101 101 11 000 000 d(low) d(high)

11 011 101 11 101 101 11 bx 000

Field Encodings: 0 :
rx :
xx :
bx:

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX -l- dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: MULT A,H

Before instruction execution: After instruction execution:

AF: F E szxhxvnc AF: F E 10xhx0n0
HL: 1 2 o e HL: F F D C

5 - 9 3

MULTU
Multiply Unsigned (Byte)

MULTU [A,]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: HL«~A x src

The contents of the accumulator are multiplied by the source operand and the product
is stored in the HL register. The contents of the accumulator and the source are
unaffected. Both operands are treated as unsigned, binary integers.
The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the H register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in eight bits and the H register
merely holds zero.

Flags: S: Cleared .,
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is greater than or equal to 28; cleared otherwise

Exceptions: None

Addressing 4

Mode Syntax Instruction Format

R
RX
IM
IR

DA
X

SX
RA
SR
BX

MULTU A,R
MULTU A,RX
MULTU A,n
MULTU A,(HL)

MULTU A,(addr)

MULTU A,(XX + dd)

MULTU A,(XY + d)

MULTU A,<addr>
MULTU A,(SP + dd)

MULTU A,(XXA + XXB)

11 101 101 11 r 001

11 <D11 101 11 101 101

11 111 101 11 101 101

11 101 101 11 110 001

11 011 101 11 101 101

11 111 101 11 101 101

11 ¢11 101 11 101 101

11 111 101 11 101 101

11 011 101 11 101 101

11 011 101 11 101 101

11 rx 001

11 111 001

11 111 001

11 xx 001

11 110 001

11 000 001

11 000 001

11 bx 001

n

d(low)

d(low)

addr(low) addr(high)

d(high)

disp(low) disp(high)

d(high)

Field Encodings: ¢):
rx :
xx :
bx :

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL 4- dd)
001 for (HL + IX), 010 for (HL 4- IY), 011 for (IX 4- IY)

Example: MULTU A,H
Before instruction execution: After instruction execution:

AF: F E szxhxvnc AF: F E 00xhx0n1
HL: 0 2 F B HL: 0 1 F C

5-y4

MULTUW
Multiply Unsigned (Word)

MULTUW [HL,]src src = R, IM, DA, X, RA

Operation: DEHL **- HL x src

The contents of the HL register are multiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as unsigned, binary integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the DE register is required to represent the result; if the Carry flag is
cleared to 0, the product can be represented correctly in 16 bits and the DE register
merely holds zero.

Flags: S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Unaffected

' • V: Cleared
N: Unaffected
C: Set if the product is greater than or equal to 2 1 6 ; cleared otherwise

E xceptions: None

Addressing
Mode Syntax Instruction Format

R: MULTUW HL,RR 11 101 101 11 rr 011

MULTUW HL,XY 11 ¢11 101 11 101 101 11 100 011

IM: MULTUW HL.nn

DA: MULTUW HL,(addr)

X: MULTUW HL,(XY + dd)

RA: MULTUW HL,<addr>

11 111 101 11 101 101 11 110 011 n(low) n(high)

11 011 101 11 101 101 11 010 011 addr(low) addr(high)

11 111 101 11 101 101 11 xy 011 d(low) d(high)

11 011 101 11 101 101 11 110 011 disp(low) disp(high)

IR: MULTUW HL.(HL) 11 011 101 11 101 101 11 000 011

Field Encodings: ¢ : o for ix, 1 tor iy

rr: 000 for BC, 010 for DE, 100 for HL, 110 for SP
xy : 000 for (IX + dd), 010 for (IY + dd)

Example: MULTUW HL.DE

Before instruction execution: After instruction execution:

F
DE
HL

szxhxvnc F: - OOxhxOnO
0 0 0 A DE: 0 0 0 0
0 0 3 1 HL: 0 1 E A

5 - 9 5

MULTW [HL,]src src = R, IM, DA, X, RA

Operation: DEHL HL x src

MULTW
Multiply (Word)

The contents of the HL register are multiplied by the source operand and the product is
stored in the DE and HL registers. The contents of the source are unaffected. Both
operands are treated as signed, twos-complement integers.

The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the DE register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in 16 bits and the DE register
merely holds sign-extension data.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected
C: Set if the product is less than -2 1 5 or greater than or equal to 215; cleared

otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R:

i . . * V - 1 *

IM

DA

X

RA

IR

<<- .¾.; ■:

MULTW HL.RR

MULTW HL,XY

MULTW HL.nn

MULTW HL,(addr)

MULTW HL,(XY + dd)

MULTW HL,<addr>

MULTW HL.(HL)

11 101 101 11 rr 010

11 ¢11 101 11 101 101 11 100 010

11 111 101 11 101 101 11 110 010 n(low) n(high)

11 011 101 11 101 101 11 010 010 addr(low) addr(high)

11 111 101 11 101 101 11 xy 010 d(low) d(high)

11 011 101 11 101 101 11 110 010 disp(low) disp(high)

11 011 101 11 101 101 11 000 010

Field Encodings: 0 : 0 for ix. 1 for iy

rr: 000 for BC, 010 for DE, 100 for HL, 110 for SP
xy : 000 for (IX + dd), 010 for (IY + dd)

Example: MULTW HL,DE

Before instruction execution: After instruction execution:

F: szxhxvnc F: OOxhxOnO
DE: 0 0 0 A DE: 0 0 0 0
HL: 0 0 3 1 HL: 0 1 E A

5 - 9 6

/

NEG
Negate Accumulator

NEG [A]

Operation: A **- - A

Flags:

' S * *

The contents of the accumulator are negated, that is, replaced by its twos-complement
value. Note that 80h is replaced by itself, because in twos-complement representation
the negative number with greatest magnitude has no positive counterpart; for this case,
the Overflow flag is set to 1.

S: Set if the result is negative, cleared otherwise
Z: Set if the result is zero, cleared otherwise
H: Set if there was a borrow from the least significant bit of the high-order four bits of

the result (bit 4); cleared otherwise
V: Set if the contents of the accumulator was not 80

before the operation; cleared otherwise.
N: Set • •.

/

C: Set if the contents of the accumulator was not 00

H

- ., t * . •) x Vi -V- 5 -'v. 5 '

l_j before the operation; cleared otherwise.

Exceptions: None

Addressing
Mode Syntax Instruction Format

NEG A 11
1 0 1 1 0 1

01 000 100

Example: NEG A

Before instruction execution: After instruction execution:

2 8 szxhxvnc AF: D 8 | 10x0x010

» .<• •

5 - 9 7

NEG
Negate HL

NEG HL

Operation: HL - HL

The contents of the HL register are negated, that is, replaced by its twos-complement
value. Note that 8000h is replaced by itself, because in twos-complement representation
the negative number with greatest magnitude has no positive counterpart; for this case,
the Overflow flag is set to 1.

Flags: S: Set if the result is negative, cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there was a borrow from the least significant bit of the high-order four bits of

the result (bit 12); cleared otherwise
V: Set if the contents of HL was 8000h before the operation; cleared otherwise
N: Set
C : Set if the contents of HL was not OOOu before the operation; cleared otherwise.

Exceptions: None

Addressing
Mode Syntax

NEG HL

Instruction Format

11 101 101 01 001 100

Example: NEG HL

Before instruction execution: After instruction execution:

F: szxhxvnc F: 10x1x010
HL:

0' » 1 0 1 2 1 HL:i F E D F

5 - 9 8

NOP
No Operation

Operation:

NOP

None

No operation.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

NOP 00 000 000

5 - 9 9

Example: OTDR

Before instruction execution: After instruction execution:

F:
BC:
HL:

szxhxvnc
0 3 4 6
5 2 1 8

F: slxhsvlc
BC: 0 0 4 6
HL- 5 2 1 5

I/O Page register:

1 7

Data memory:

5216: A 3
5217: F F
5218: 9 B

Byte 9 Bh written to I/O port 1 7 0 3 4 6 h ,

then byte FFh written to I/O port 1 7 0 2 4 6 h ,

then byte A 3 h written to I/O port 170146(-j.

r *

4

t

♦

5 - 1 02

OTIR
Output, Increment and Repeat (Byte, Word)

OTIR
OTIRW

Operation: Repeat until B = 0: (C) + - (HL)
B — B - 1
HL + - AUTO INCREM ENT (by one if byte, by two if word)

This instruction is used for block output of strings of data. The string of data is loaded
• into the selected peripheral from memory at consecutive addresses, starting with the

location addressed by the HL register and increasing. During the I/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Aq-A - is , and the contents of the
I/O Page register are placed on address lines A 16 ~ A 23 . The byte or word of data from
the m em ory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decrem ented by one. The HL register is then in-

• crem ented by one for byte transfers or by two for word transfers, thus moving the
m em ory pointer to the next source for the output. If the result of decrementing B is zero,
the instruction is terminated, otherwise the output sequence is repeated. Note that if the
B register contains 0 at the start of the execution of this instruction, 256 bytes are output.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

OTIR
OTIRW

11 101 101 10 110 011
11 101 101 10 010 011

5 - 1 0 3

L

Example: OTIRW

Before instruction execution: After instruction execution:

F: szxhxvnc F: slxhxvlc
BC: 0 2 4 4 BC: 0 0 4 4
HL: 5 0 0 4 HL: 5 0 0 8

I/O Page register:

3 1

Data memory:

5004: 9 0
5005: 3 A
5006: 6 7
5007: B 8

Word 3A 90h written to I/O port 31 0 2 4 4 h ,

then word B867h written to I/O port
3 1 0 1 4 4 h .

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

\ . - {« k- i. V . \ • .« * * ̂ * * . . ’l .4

5- 104

OUT
Output

OUT (C),src src = R, RX, DA, X, RA, SR, BX

Operation: (C) src

The byte of data from the source is loaded into the selected peripheral. During the I/O
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines Aq-A-is, and the
contents of the I/O Page register are placed on address lines A - \ 6 ~ h 2 3 - The byte of data
from the source is then loaded into the selected peripheral.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode

R:
RX:
DA:

X:
RA:
SR:
BX:

Syntax v

OUT (C),R

OUT (C),RX

OUT (C),(addr)

OUT (C),(XX + dd)

OUT (C),<addr>

OUT (C),(SP + dd)

OUT (C),(XXA + XXB)

Instruction Format ., « l i ' J*\ .*y 'k. *

11 101 101 01 r 001

11 ¢11 101 11 101 101 01 rx 001 •

11 011 101 11 101 101 01 111 001 addr(low) addr(high)

11 111 101 11 101 101 01 XX 001 d(low) d(high)

11 111 101 11 101 101 01 000 001 disp(low) disp(high)

11 011 101 11 101 101 01 000 001 d(low) d(high)

11 011 101 11 101 101 01 bx 001

Field Encodings: <l>:
rx :
xx:
bx:

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: OUT (C),IXH
Before instruction execution:

BC:
IX:

I/O Page register:

1 6 5 0
F D 0 7

After instruction execution:

Byte FDh written to
I/O port 321650H

3 2

OUT
Output Accumulator

OUT (n),A

Operation: (n) * - A

The contents of the accumulator are loaded into the selected peripheral. During the I/O
transaction, the 8 -bit peripheral address from the instruction is placed on the low byte of
the address bus, the contents of the accumulator are placed on address lines As-A-15,
and the contents of the I/O Page register are placed on address lines A16-A 23. Then the
contents of the accumulator are written into the selected port.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax

OUT (n),A

instruction Format

11 010 011 n

Example: OUT (55H),A

Before instruction execution: After instruction execution:

4 2

I/O Page register:

Byte 42h written to
I/O port 114255h

1 1
-t • > \ , ■%.**•*• \ ' > ’ '«r ‘ * ' • •• / • «,

r>>

5 - 1 0 6

OUTD
Output and Decrement (Byte, Word)

OUTD
OUTDW

Operation: (C) • * - (HL)
B « - B — 1
HL ■ * - AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block output of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Aq-At 5, and the contents of the I/O
Page register are placed on address lines A16-A23 . The byte or word of data from the
memory location addressed by the HL register is loaded into the selected peripheral. The B
register, used as a counter, is decremented by one. The HL register is decremented by one
for byte transfers or by two for word transfers, thus moving the memory pointer to the next
source for the output.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

OUTD 11 101 101 10 101 011
OUTDW 11 101 101 10 001 011

A t

5 - 1 0 7

Example: OUTDW

Before instruction execution: ■ After instruction execution:

F: szxhxvnc F: sOxhxvlc

BC: 1 5 6 4 BC: 1 4 6 4

HL: 5 0 0 6 HL: 5 0 0 4

I/O Page register: Word 8D07h w ritten to

I/O port 331 564h
3 3

Data memory:

5006:

5007:

0 7

8 D

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

5- 108

OUTI
Output and Increment (Byte, Word)

OUTI
OUTIW

Operation: (C) (H L)
B — B - 1
HL <«- AUTOINCREMENT HL (by one if byte, by two if word)

This instruction is used for block output of strings of data. During the I/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines As-A-js, and the contents of the
I/O Page register are placed on address lines A16-A 23. The byte or word of data from
the memory location addressed by the HL register is loaded into the selected peripheral.
The B register, used as a counter, is decremented by one. The HL register is then incre­
mented by one for byte transfers or by two for word transfers, thus moving the memory
pointer to the next source for the output. r.. ,

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax Instruction Format

OUTI 11 101 101 10 100 011
OUTIW 11 101 101 10 000 011

Example: OUTI
t

. •*./ " - ••

Before instruction execution: After instruction execution:

F: szxhxvnc R sOxhxvlc
BC: 1 5 6 4 BC: 1 4 6 4
HL: 5 0 CMO HL: 5 0 0 3

I/O Page register: Byte 7Bh written to
I/O port 331 564h

3 3

Data memory:

5002: 7 B

5- 109

OUT[W]
Output HL

OUT[W] (C),HL

Operation: (C) H L

The contents of the HL register are loaded into the selected peripheral. During the I/O
transaction, the 8 -bit peripheral address from the C register is placed on the low byte of
the address bus, the contents of the B register are placed on address lines A8 -A 15, and
the contents of the I/O Page register are placed on address lines A16-A 23. Then the con­
tents of the HL register are written into the selected port. For 8 -bit data buses, only the
contents of the H register are transferred during a single bus transaction.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax

OUTW (C),HL

Instruction Format

11 101 101 10 111 111

Example: OUTW (C),HL

Before instruction execution:

BC:
HL:

I/O Page register:

1 7

2 6 5 0
3 A 8 4

After instruction execution:

Word 843Ah written

to I/O port 1 7 2 6 5 0 h

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

tea

5-110

PCACHE
Purge Cache

PCACHE

Operation: All cache entries invalidated

This instruction is used to invalidate all entries in the cache.

Flags:

Exceptions:

No flags affected

None

Addressing
Mode Syntax

PCACHE

Instruction Format

11 101 101 01 100 101
•t: i * »*•

*• *

5-111

POP
POP

POP dst dst = BC, DE, HL, AF, IX, IY, IR, DA, RA

Operation: dst ■*- (SP)
SP SP + 2

The content of the memory location addressed by the Stack Pointer (SP) are loaded into the
destination. For register destinations, the byte at the memory location specified by the
contents of the SP is loaded into the low byte of the destination register (or Flag register for
AF) and the byte at the memory location one greater than the contents of the SP is loaded
into the high byte of the destination register. The SP is then incremented by two. If the
destination is a memory location, the destination and the top of the stack must be
non-overlapping.

Flags: No flags affected (unless dst = AF)

Exceptions: None

Addressing
Mode Syntax

R: POP RR

POP XY

IR: POP (HL)

DA: POP (addr)
RA: POP <addr>

Instruction Format

11 rr 001

11 ¢11 101 11 100 001

11 011 101 11 000 001

11 011 101 11 010 001 addr(low) addr(high)

11 011 101 11 110 001 disp(low) disp(high)

Field Encodings: <t>: o for ix, 1 for iy
rr: 000 for BC, 010 for DE, 100 for HL, 110 for AF

Example: POP BC - , .

Before instruction execution: After instruction execution:

BC: 2 3 0 8 BC: 0 9 2 3
SP: F E 3 2 SP: F E 3 4

Data memory: - Data memory:

FE32: 2 3 FE32: 2 3
FE33: 0 9 FE33: 0 9

5 - 1 1 2

PUSH
Push

PUSH src src = BC, DE, HL, AF, IX, IY, IM, IR, DA, RA

Operation: SP SP - 2
(SP) src

The Stack Pointer (SP) is decrem ented by two and the source is loaded into the location
addressed by the updated SP; the low byte of the source (or Flag register for AF) is load­
ed into the addressed m em ory location and the upper byte of the source is loaded into
the addressed m em ory location increm ented by one. The contents of the source are
unaffected. If the source is a m em ory location, the source and the new top of the stack
must be non-overlapping.

Flags: No flags affected

Exceptions: System Stack Overflow Warning

Addressing
Mode Syntax

R: PUSH RR

PUSH XY

IM: PUSH nn

IR: PUSH (HL)

DA: PUSH (addr)

RA: PUSH <addr>

Instruction Format

11 rr 101

11 ¢)11 101 11 100 101

11 111 101 11 110 101 n(low) n(high)

11 011 101 11 000 101

11 011 101 11 010 101 addr(low) addr(high)

11 011 101 11 110 101 disp(low) disp(high)

Field Encodings: ¢: o tor ix, 1 for iy

rr: 000 for BC, 010 for DE, 100 for HL, 110 for AF

Example: PUSH BC

Before instruction execution: After instruction execution:

BC: 0 9 2 3 BC: 0 9 2 3
SP: F E 3 4 SP: F E 3 2

Data memory: Data memory:

FE32: 0 0 FE32: 2 3
FE33: 0 0 FE33: 0 9

5 - 1 1 3

RES
Reset Bit

RES b.dst dst = R, IR, SX

Operation: d s t (b) 0

The specified bit b within the destination operand is cleared to 0. The other bits in the
destination are unaffected. The bit number b must be between 0 and 7.

Flags: No flags affected >

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: RES b,R 11 001 011 10 b r
IR: RES b,(HL) 11 001 011 10 b 110
SX: RES b,(XY + d) 11 <D11 101 11 001 011 4 10 b 110

Field Encoding: ¢: o tor ix, 1 for iy

Example: RES 1,A
Before instruction execution:

00010110

After instruction execution:

00010100

5-1 14

Return

RET [cc]

Operation: If the cc is satisfied then: PC (SP)
SP SP + 2

This instruction is used to return to a previously executing procedure at the end of a
procedure entered by a Call instruction. For a conditional return, one of the Zero, Carry,
Sign, or Parity/Overflow flags is checked to see if its setting matches the condition code
“ c c ” encoded in the instruction; if the condition is not satisfied, the instruction following the
Return instruction is executed, otherwise a value is popped from the stack and loaded into
the Program Counter (PC), thereby specifying the location of the next instruction to be
executed. For an unconditional return, the return is always taken and a condition code is
not specified.

The following figure illustrates the format of the PC on the stack for the Return instruction;

«

SP before

SP after

PC (low)
PC (high)

1 byte - *

low address

high address

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format

RET cc

RET
11 cc 000

11 001 001

Field Encodings: c c : OOO for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
110 for P or NS, 111 for M or S

Example: RET NC

Before instruction execution: ' After instruction execution:

F: szxhxvnO F: szxhxvnO
PC: 2 5 2 8 PC: 1 6 3 3
SP: F F 2 4 SP: F F 2 6

Data memory: Data memory:

FF24: 3 3 FF24: 3 3
FF25: 1 6 FF25: 1 6

5 - 1 1 5

RET I
Return from Interrupt

RETI

Operation: PC (SP)
SP «*- SP + 2

This instruction is used to return to a previously executing procedure at the end of a pro­
cedure entered by an interrupt while in interrupt mode 0, 1, or 2. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC).
The following figure illustrates the format of the PC on the stack for the Return from In­
terrupt instruction:

SP before

SP after

PC (low)
PC (high)

low address

high address

/•*•*■'*

•*- 1 byte - * •

A special sequence of bus transactions is performed when this instruction is
encountered in order to control Z80 family peripherals; see Chapter 12.

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing -

Mode Syntax Instruction Format

RETI 11 101 101 01 001 101

Example: RETI
V * >• .* < .

Before instruction execution: After instruction execution:

PC: 8 4 1 0
SP: F F C 6

Data memory:

FFC6: 7 2
FFC7: 1 9

PC: 1 9 7 2
SP: F F C 8

Data memory:

•

FFC6: 7 2

FFC7: 1 9

5 - 1 1 6

/

RETIL
Return from Interrupt Long

RETIL

Operation: PS (SP)
SP SP + 4

This instruction is used to return to a previously executing procedure at the end of a pro­
cedure entered by an interrupt while in interrupt mode 3 or a trap. The contents of the
location addressed by the Stack Pointer (SP) are popped into the Program Counter (PC)
and Master Status register (MSR).

c « •

The following figure illustrates the format of the program status (PC and MSR) on the
system stack for the Return from Interrupt Long instruction:

SP before

SP after

MSR (low) low address
MSR (high)

PC (low)
PC (high)

__________ high address
1 byte -*•

<; tv. f

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

RETIL 11 101 101 01 010 101

Example: RETIL

Before instruction execution:

PC: 8 4 1 0
SP: F F c 6

MSR: 0 O 0 0

Data memory:

FFC6: 7 F
FFC7: 4 O ►

FFC8: 7 2
FFC9: 1 9

After instruction execution:

PC: 1 9 7 2
SP: F F C A

MSR: 4 0 7 F

Data memory:

FFC6: 7 F
FFC7: 4 0
FFC8: 7 2
FFC9: 1 f

\» f *

\

/

5 - 1 1 7

RETN
Return from Nonmaskable Interrupt

RETN

Operation: PC (SP)
SP SP + 2
MSR(0-7) **- IFF(0-7)

This instruction is used to return to a previously executing procedure at the end of a pro­
cedure entered by a nonmaskable interrupt while in interrupt mode 0 ,1 , or 2. The con­
tents of the location addressed by the Stack Pointer (SP) are popped into the Program
Counter (PC). The previous setting of the interrupt masks in the Master Status register
are restored.
The following figure illustrates the format of the PC on the stack for the Return from Non­
maskable Interrupt instruction:

low address

high address

Flags: No flags affected

Exceptions: Privileged Instruction

Addressing
Mode Syntax Instruction Format

RETN 11 101 101 01 000 101

Example: RETN

Before instruction execution: After instruction execution:

SP before

SP after

PC (low)
PC (high)

1 byte

PC: 8 4 1 0 PC: 1 9 7 2
SP: F F C 6 SP: F F C 8

MSR: 4 0 0 0 MSR: 4 0 7 F

Shadow Interrupt register:

7 F

Data memory: Data memory:

FFC6: 7 2 FFC6: 7 2
FFC7: 1 9 FFC7: 1 9

5 - 1 1 8

Rotate Left

RL dst dst = R, IR. SX

Operation: tm p dst
dst(O) C
C dst(7)
dst(n + 1) tmp(n) for n = 0 to 6

dst

The contents of the destination operand are concatenated with the Carry flag and
together they are rotated left one bit position. Bit 7 of the destination operand is moved
to the Carry flag and the Carry flag is moved to bit 0 of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherw ise
Z: Set if the result is zero; cleared otherw ise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherw ise

E xceptions: None

Addressing
Mode Syntax Instruction Format

R: RL R

IR: RL (HL)
11 001 011 00 010 r

11 001 011 00 010 110
SX: RL (XV + d) 11 <J>11 101 11 001 011 4 00 010 110

Field Encoding: 0 : 0 for ix, 1 for iy

Example: RL D

Before instruction execution: After instruction execution:

F: szxhxpnO F: 00x0x101
D: 10001111 D: 00011110

5 - 1 1 9

RLA
Rotate Left Accumulator

RLA

Operation:

Flags:

tmp A
A(0) — C
C - A(7)
A(n + 1) tmp(n) for n = 0 to 6

The contents of the accumulator are concatenated with the Carry flag and together they
are rotated left one bit position. Bit 7 of the accumulator is moved to the Carry flag and
the Carry flag is moved to bit 0 of the destination.

S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: RLA 00 010 111

Example: R L A

Before instruction execution: After instruction execution:

01110110 szxhxpnl AF: 11101101 szxOxpOO

5 - 1 2 0

RLC
Rotate Left Circular

Operation:

Flags:
r . • ; ; .

RLC dst dst = R, IR, SX

tmp dst
C <*- dst(7)
dst(O) tmp(7)
dst(n + 1) *- tmp(n) for n = 0 to 6

The contents of the destination operand are rotated left one bit position. Bit 7 of the
destination operand is moved to the bit 0 position and also replaces the Carry flag.

S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

11 001 011 00 r

11 001 011 00 110

1 1
¢11 101 11 1001I____ 011

R
IR

SX

RLC R

RLC (HL)

RLC (XY + d) Q. 00 000 110

Field Encoding: <d : o for ix, 1 tor iy

-Example: RLC B ..
Before instruction execution: After instruction execution:

F: szxhxpnc F: 00x0x101
B: 10001000 B: 00010001

5- 121

RLCA
Rotate Left Circular (Accumulator)

RLCA

Operation: tmp *- A
C - A(7)
A(0) **- tmp(7)
A(n + 1) tmp(n) for n = 0 to 6

A

The contents of the accumulator are rotated left one bit position. Bit 7 of the
accumulator is moved to the bit 0 position and also replaces the Carry flag.

Flags: S: Unaffected
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 7 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

RLCA 00 000 111

Example: RLCA

’ ' Before instruction execution: After instruction execution: 1

10001000 szxhxpnc AF: 00010001 szx0xp01

5 - 1 2 2

RLD
Rotate Left Digit

Operation:

Flags:

RLD

tmp(0:3) A(0:3)
A(0:3) dst(4:7)
dst(4:7) dst(0:3)
dst(0:3) tmp(0:3)

A dst

The low digit of the accumulator is logically concatenated to the destination byte whose mem­
ory address is in the HL register. The resulting three-digit quantity is rotated to the left by one
BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the
upper digit of the source is moved to the lower digit of the accumulator, and the lower digit of
the accumulator is moved to the lower digit of the source. The upper digit of the accumulator is
unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the left a
string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer
digits between successive bytes of the string. This is analogous to the use of the Carry flag in
multiple-precision shifting using the RL instruction.

S: Set if the accumulator is negative after the operation; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax

RLD

Instruction Format

11 101 101 01 101 111

Example: RLD

Before instruction execution:

AF: 3 7 szxhxpnc
HL: 5 0 0 0

Data memory:

5000: 0 4

After instruction execution:

AF:
HL:

3 0 00x0x10c
5 0 0 0

Data memory:

5000:

5 - 1 2 3

RR
Rotate Right

\

RR dst dst = R, IR, SX

Operation: tmp + - dst
dst(7)«-C
C + - dst(O)
dst(n) **- tmp(n + 1)forn = 0 to 6

dst

The contents of the destination operand are concatenated with the Carry flag and
together they are rotated right one bit position. Bit 0 of the destination operand is moved
to the Carry flag and the Carry flag is moved to bit 7 of the destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

>5 * j;

Exceptions: None

Addressing
Mode Syntax Instruction Format

R
IR

RR R

RR (HL)

RR (XY + d) • —

11 001 011 00 011 r

11 001 011 00 011 110

11 ¢11 101 11 001 011 d 00 011 110

Field Encoding: $: o for ix. 1 for iy

Example: RR B
Before instruction execution: After instruction execution:

F: szxhxpnO F: 00x0x001
B: 11011101 B: 01101110

5 - 1 2 4

I RRA
Rotate Right (Accumulator)

%

RRA

Operation:

Flags: ; S'J

tmp dst
A(7) <*- C
C — A(0)
A(n) tmp(n + 1) for n = 0 to 6

A

The contents of the accumulator are concatenated with the Carry flag and together they
are rotated right one bit position. Bit 0 of the accumulator is moved to the Carry flag and
the Carry flag is moved to bit 7 of the accumulator.

4 / « T * »S: Unaffected , , .
Z: Unaffected
H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

RRA 00 011 111

Example: RRA

Before instruction execution: After instruction execution:

« * . • ; * AF: 11100001 szxhxpnO AF: 01110000 szx0xp01

5 - 1 2 5

RRC
Rotate Right Circular

I

RRC dst dst = R, IR, SX

Operation: tmp dst
C — dst(O)
dst(7) **- tmp(O)
dst(n) ♦- tmp(n + 1) for n = 0 to 6

7 — 0 C

dst

. . , . The contents of the destination operand are rotated right one bit position. Bit 0 of the
destination operand is moved to the bit 7 position and also replaces the Carry flag.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Exceptions: None
t

Addressing
Mode Syntax

R: RRC R

IR: RRC (HL)

SX:
« . . V 1' .1-- ' ! 1 ' * • • "

RRC (XY + d)

Field Encoding: ¢: o for ix, 1 for iy

Instruction Format

11 001 011 00 001 r
11 001 011 00 001 110
11 ¢) 11 101 11 001 011 d 00 001 110

Example: RRC A
Before instruction execution: After instruction execution:

00110001 szxhxpnc AF: 10011000 10x0x001

I

RRCA
Rotate Right Circular (Accumulator)

RRCA

Operation: tm p A
C - A(0)
A (7) t e m p (O)
A(n) * - tmp(n + 1) for n = 0 to 6

dst

The contents of the accum ulator are rotated right one bit position. Bit 0 of the
accum ula tor is moved to the bit 7 position and also replaces the Carry flag.

Flags:
' . .• « • > • v." t' i ** }' ‘ • . •'

S: Unaffected
Z: Unaffected . . • • • • - - • ■■ - ^! • —

H: Cleared
P: Unaffected
N: Cleared
C: Set if the bit rotated from bit 0 was a 1; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

RRCA 00 001 111

i
Example: RRCA

Before instruction execution: After instruction execution:

AF:

l

00010001 szxhxpnc AF: 10001000 szx0xp01

5 - 1 2 7

RRD
Rotate Right Digit

RRD

Operation: tmp(0:3) <*- A(0:3)
A(0:3) dst(0:3)
dst(0:3) ♦- dst(4:7)
dst(4:7) *- tmp(0:3)

A dst

.......... .The low digit of the accumulator is logically concatenated to the destination byte whose mem­
ory address is in the HL register. The resulting three-digit quantity is rotated to the right by one
BCD digit (four bits). The lower digit of the source is moved to the upper digit of the source; the
upper digit of the source is moved to the lower digit of the accumulator, and the lower digit of
the accumulator is moved to the lower digit of the source. The upper digit of the accumulator is

/ unaffected. In multiple-digit BCD arithmetic, this instruction can be used to shift to the right a
string of BCD digits, thus multiplying it by a power of ten. The accumulator serves to transfer
digits between successive bytes of the string. This is analogous to the use of the Carry flag in
multiple-precision shifting using the RR instruction.

i

Flags: S: Set if the accumulator is negative; cleared otherwise
Z: Set if the accumulator is zero after the operation; cleared otherwise
H: Cleared
P: Set if the parity of the accumulator is even after the operation; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

RRD 11 101 101 01 100 111

Example: RRD

Before instruction execution: After instruction execution:

AF: 0 6 szxhxpnc AF: 0 2 00x0x00c
H: 5 O 0 0 H: 5 0 0 0

Data memory: Data memory:

5000: 3 2 5000:

/

5 - 1 2 8

Restart

RST address

Operation: SP ♦ - SP - 2
(SP) <*- PC
PC ♦ - address

The current Program Counter (PC) is pushed onto the stack and the PC is loaded with a
constant address encoded in the instruction. Execution then begins at this address. The
restart instruction allows for a call to one of eight fixed locations as shown in the table
below. The table also indicates the encoding of the address used in the instruction en­
coding. (The address is in hexadecimal, the encoding in binary.)

Address t encoding
00H 000
08h ' • 1 001 '
10H 010
18h 011
20h 100
28h 101
30h 110
38h 111

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax

RST address

Instruction Format

11 t 111

. fc 4 • » * j , , . * , » • . - I - # * . f* • » « . i »
, . . , . • • - V * ^ • - „ * » « . *

Field Encoding: t : See table above

Example: RST 18H

Before instruction execution:

PC: 4 6 2 0
SP: F F C 4

Data memory:

FFC3: F F
FFC4: F F

After instruction execution:

PC: 0 0 1 8
SP: F F C 2

Data memory:

FFC3: 2 0 t

FFC4: 4 6

SBC
Subtract with Carry (Byte)

SBC [A,]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: A A - src - C

The source operand together with the Carry flag is subtracted from the accum ulator and
the difference is stored in the accumulator. The contents of the source are not affected.
Twos-complement subtraction is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs

................ and the result is the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R

RX
IM
IR

DA
X

SX
RA
SR
BX

SBC A,R

SBC A,RX

SBC A,n

SBC A,(HL)

SBC A,(addr)

SBC A,(XX +dd)

SBC A,(XY + d)

SBC A,<addr>

SBC A,(SP + dd)

SBC A,(XXA + XXB)

10 011

11 <t>11 101 10 011 rx

11 011 110 n I
10 011 110

11 011 101 10 011 bx

11 011 101 10 011 111 addr(low) addr(high)

11 in 101 10 011 XX d(low) d(high)

11 <D11 101 10 011 110 d

11 111 101 10 011 000 disp(low) dispfhigh)

11 011 101 10 011 000 d(low) d(high)

Field Encodings: <t>:

rx :
xx:
bx:

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: SBC A,(HL)

Before instruction execution: After instruction execution:

AF: 4 8 szxhxvnl AF: 2 F 00x1x010
HL: 2 4 S 4 HL: 2 4 5 4

Data memory: Data memory:

2454: 1 8 2454: 1 8 1I

5 - 1 3 0

SBC
Subtract with Carry (Word)

SBC dst,src dst = HL
src = BC, DE, HL, SP

or
dst = IX
src = BC, DE, IX, SP

or
dst = IY
src = BC, DE, IY, SP

Operation:
i

dst - src - C

The source operand together with the Carry flag is subtracted from the destination and
the result is stored in the destination. The contents of the source are not affected. Twos-
com plem ent subtraction is performed.

Flags: S: Set if the result is negative, cleared otherwise
Z: Set if the result is zero; cleared otherwise

' H: Set if there is a borrow from bit 1 2 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, the operands are of different signs and the

result is of the same sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise.

Exceptions: None

Addressing
Mode Syntax Instruction Format

SBC HL,RR 11 101 101 01 rr 010

SBC XY,RR 11 <M1 101 11 101 101 01 rr 010

Field Encodings: <t>: o for ix, 1 for iy

r r : 000 for BC, 010 for DE, 100 for subtract register from itself, 110 for SP

Example: SBC HL,DE

Before instruction execution: After instruction execution:

F: szxhxvnl F: 00x0x010
DE: 0 0 1 1 DE: 0 0 1 1
HL: 0 1 0 0 HL: 0 0

E E

l

5 - 13 1

sc
System Call

SC nn

Operation: SP SP - 4
(SP) — PS
SP SP - 2

(SP) ■«- nn
PS System Call Program Status

This instruction is used for controlled access to operating system software in a manner
similar to a trap or interrupt. The current program status is pushed onto the system
stack followed by a 16-bit constant embedded in the instruction. The program status con­
sists of the Master Status register (MSR) and the updated Program Counter (PC), which
points to the first instruction byte following the SC instruction. Next the 16-bit constant in
the System Call instruction is pushed onto the system stack. The system Stack Pointer is
always used regardless of whether system or user mode is in effect. The new program
status is loaded from the Interrupt/Trap Vector Table entry associated with the SC in­
struction. CPU control is passed to the procedure whose address is the PC value con­
tained in the new program status.

The following figure illustrates the format of the saved program status on the system
stack:

* j / \ .

SP after

SP before

n (low)
n (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

1 byte -*•

low address

high address

*

Flags: No flags affected

Exceptions: System Call Trap, System Stack Overflow Warning

Addressing
Mode Syntax Instruction Format

SC nn 11 101 101 01 110 001 n(low) n(high)

5-1 52

Example: SC 0155H

Before instruction execution: After instruction execution:

PC 4 6 2 0 PC: 9 0 8 8
SP F F C 9 SP: F F C 3

MSR 4 0 7 F MSR: 0 0 2 3

Interrupt/Trap Vector Table Pointer: Data memory:

3 6 8 2 | FFC3 5 5
FFC4 0 1

Physical memory: FFC5 7 F r

FFC6 4 0
365250 2 3 FFC7 2 0
365251 0 0 FFC8 4 6
365252 8 8
365253 9 0 •

Note: The physical memory addresses are 24-bit addresses emitted by the MMU. The data memory addresses are the
16-bit addresses trom the CPU.

5 - 1 3 3

/

Set Carry Flag

SCF

Operation: C •«- 1

The Carry flag is set to 1 .

Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Unaffected
N: Cleared
C: Set

Exceptions: None

Addressing
Mode Syntax Instruction Format

SCF 00 110 111

Example: SCF

Before instruction execution: After instruction execution:

szxhxvnc szxOxvOI

5 - 1 3 4

Set Bit

SET b.dst dst = R, IR, SX

Operation: dst(b) 1

The specified bit b within the destination operand is set to 1. The other bits in the
destination are unaffected. The bit to be set is specified by a 3-bit field in the instruction;
this field contains the binary encoding for the bit number to be set. The bit number must
be between 0 and 7.

Flags: No flags affected

Exceptions: None

Addressing
Mode Syntax Instruction Format - - - - - * • «. ¢. « • * » '* » * V* - ' . . n ~

R: SET b.R 11 001 011 11 b r

IR: SET b,(HL) 11 001 011 11 b 110

SX: SET b,(XY + d) 11 011 101 11 001 011 d 11 b 110

Field Encoding: o: o for ix. 1 for iy

Example: SET 1 ,A

Before instruction execution:

00010100

After instruction execution:

00010110

5 - 1 3 5
I

SLA
Shift Left Arithmetic

SLA dst dst = R, IR, SX

Operation: tmp dst
C dst(7)
dst(O) 0
dst(n + 1) ♦ - tmp(n) for n = 0 to 6

c 0

dst

The contents of the destination operand are shifted left one bit position. Bit 7 of the
destination operand is moved to the Carry flag and zero is shifted into bit 0 of the
destination.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 7 was a 1 ; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: SLA R

IR: SLA (HL)

SX: SLA (XY + d)

11 001 011 00 100 r

11 001 011 00 100 110

11 ¢11 101 11 001 011 d 00 100 110

Field Encoding: «j> : o for ix, 1 for iy

Example: SLA L

Before instruction execution: After instruction execution:

£ F: szxhxpnc F: 00x0x001
L: 10110001 L: 01100010

5-1 36

SRA
Shift Right Arithmetic

SRA dst dst = R, IR, SX

Operation: tmp dst
C dst(O)
dst(7) ♦ - tmp(7)
dst(n) tmp(n + 1) for n = 0 to 6

dst

:

S M i

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and bit 7 remains unchanged.

Flags: S: Set if the result is negative; cleared otherwise-
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was 1 ; cleared otherwise

Exceptions: None
»

Addressing
Mode Syntax Instruction Format

R: SRA R 11 001 011 00 101 r

IR: SRA (HL) 11 001 011 00 101 110

SX: SRA (XY + d) 11 <t> 11 101 11 001 011 d 00 101 110

Field Encoding:

Example:

<t>: 0 for IX, 1 for IY

SRA (IX + 3)

Before instruction execution:

F:
IX:

Data memory:

1003:

After instruction execution:

szxhxpnc
1 0 O O

F:
IX:

Data memory:

1003:

10x0x000
1 0 0 0

Address calculation:

1000
+ 3

1003

5 - 1 3 7

SRL
Shift Right Logical

SRL dst dst = R, IR, SX

Operation: tmp dst
C dst(O)
dst(7) 0
dst(n) tmp(n + 1) for n = 0 to 6

o

dst

The contents of the destination operand are shifted right one bit position. Bit 0 of the
destination operand is moved to the Carry flag and zero is shifted into bit 7 of the
destination.

Flags: S: Cleared
Z: Set if the result is zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Set if the bit shifted from bit 0 was 1 ; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: SRL R
IR: SRL (HL)

SX: SRL (XY + d)

11 001 011 00 111 r

11 001 011• 00 111 110
11 ¢11 101 11 001 011 d 00 111 110

- . '• •■ jh .V b A • 1. i *.».• . ' l . , 1 . "

Field Encoding: <t>: o for ix, 1 for iy

Example: SRL B

Before instruction execution: After instruction execution:

F: szxhxpnc F: 00x0x101
B: 10001111 B: 01000111

5- 1 38

SUB
Subtract

SUB [A,]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: A ♦ - A - src

The source operand is subtracted from the accum ulator and the difference is stored in
the accum ulator. The contents of the source are unaffected. Twos-complement subtrac­
tion is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs

and the result is the same sign as the source; cleared otherwise
N: Set

.... C: Set if there is a borrow from the most significant bit of the result; cleared otherwise

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: SUB A,R 10 010 r

RX: SUB A,RX 11 <D11 101 10 010 rx

IM : SUB A,n 11 010 110 n

IR: SUB A,(HL) 10 010 110

DA: SUB A,(addr) 11 011 101 10 010 111 addr(low) addr(high)

X: SUB A,(XX + dd) 11 111 101 10 010 XX d(low) d(high)

SX: SUB A,(XY + d) 11 <M1 101 10 010 110 ___ * ___ I
RA: SUB A,<addr>
SR : SUB A,(SP + dd)

11 111 101 10 010 000 disp(low) disp(high)

11 011 101 10 010 000 d(low) d(high)

BX: SUB A,(XXA + XXB) 11 011 101 10 010 bx

Field Encodings: ¢):
rx :
xx :
bx :

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL -F dd)
001 for (HL + IX), 010 for (HL -F IY), 011 for (IX 4- IY)

Example: SUB A,(HL)

Before instruction execution: After instruction execution:

AF: 4 8 szxhxvnc AF: 3 0 00x0x010
HL: 2 4 5 4 HL: 2 4 5 4

Data memory: Data memory:

2454: 1 8 2454: 1 8 ,I

5-1 39

SUBW
Subtract (Word)

SUBW [HLJsrc src = R, IM, DA, X, RA

Operation: H L ^ -H L src

Flags:

' , * » - a • ' • • ’ 1 . ‘

The source operand is subtracted from the HL register and the difference is stored in
the HL register. The contents of the source are unaffected. Twos-complement subtrac­
tion is performed.

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of the opposite signs
' - and the result is the sam e sign as the source; cleared otherwise
N: Set
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise,

Exceptions: None

Addressing
Mode Syntax Instruction Format

R:

IM
DA

X
RA
IR

, / . . v - f

SUBW HL.RR
SUBW HL,XY
SUBW HL,nn
SUBW HL,(addr)
SUBW HL,(XY + dd)
SUBW HL,<addr>
SUBW HL,(HL)

11 101 101 11 rr 110

11 ¢11 101 11 101 101 11 101 110

11 m 101 11 101 101 11 111 110 n(low)

11 011 101 11 101 101 11 011 110 addr(low)

11 in 101 11 101 101 11 xy 110 d(low)

11 011 101 11 101 101 11 111 110 disp(low)

11 011 101 11 101 101 11 001 110

n(high)

addr(high)

d(high)

disp(high)

-

Field Encodings: :
rr:

xy :

0 for IX, 1 for IY
001 for BC, 011 for DE, 101 for HL, 111 for SP
001 for (IX + dd), 011 for (IY + dd)

Example: SUBW HL,DE

Before instruction execution After instruction execution:

F
DE
HL

szxhxvnc F: 10x0x010
0 0 1 0 DE: 0 0 1 0
A 1 2 3 HL: A 1 1 3

5 - 1 4 0

TSET
Test and Set

TSET dst dst = R, IR, SX

Operation: S dst(7)
dst * - FFh

Bit 7 within the destination operand is tested, and the Sign flag is set to 1 if the specified
bit is 1, otherwise the Sign flag is cleared to 0. The contents of the destination are then
set to all 1s. For memory operands, the operand is always fetched from the external
memory; on the Z-BUS interface, the status lines indicate a Test and Set operation dur:
ing the m em ory read transaction.

Between the data read and subsequent write transactions, bus request is not granted.
The data is read from memory, even if it is also present in the cache.

Flags: S: Set if bit 7 is 1; cleared otherwise
Z: Unaffected *
H: Unaffected
P: Unaffected
N: Unaffected
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format

R: TSET R 11 001 011 00 110 r
IR

S X

TSET (HL)
TSET (XY + d)

11 001 011 00 110 110

11 ¢11 101 11 001 011 d 00 110 110

Field Encoding:

Example:

¢ : 0 for IX, 1 for IY

TSET (HL) - •

Before instruction execution: After instruction execution:

F: szxhxpnc
HL: 0 3 8 2

Data memory:

0382: 00010111
* •

F: Ozxhxpnc
HL: 0 3 8 2

Data memory:

0382: 11111111

5- 141

TSTI
Test Input

TSTI (C)

Operation: F test (C)
♦

During the I/O transaction, the peripheral address from the C register is placed on the
low byte of the address bus, the contents of the B register are placed on address lines
A 8 - A 1 5 , and the contents of the I/O Page register are placed on address lines A-I6-A23-
The byte of data from the selected peripheral is tested and the CPU flags set according­
ly. No CPU register or m em ory location is modified.

Flags: S: Set if the tested byte is negative; cleared otherwise
Z: Set if the tested byte is zero; cleared otherwise
H: Cleared
P: Set if the parity of the tested byte is even; c leared otherwise
N: Cleared
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode Syntax

TSTI (C)

Instruction Format

11 101 101 01 110 000

Example: TSTI (C)

Before instruction execution: After instruction execution:

F:
BC:

szxhxpnc
5 0 4 6

10x0x10c

I/O Page register:

1 2

Byte 93h available at I/O port 125046h-

5 - 1 4 2

XOR
Exclusive OR

XOR [A,]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: A*~ A XOR src

A logical EXCLUSIVE OR operation is performed between the corresponding bits of the
source operand and the accum ulator and the result is stored in the accum ulator. A 1 bit
is stored wherever the corresponding bits in the two operands are different; otherwise a
0 bit is stored. The contents of the source are unaffected.

Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Cleared
P: Set if the parity of the result is even; cleared otherwise
N: Cleared
C: Cleared

«* •» v » M »

Exceptions: None
•

Addressing
Mode Syntax Instruction Format

R
RX
IM
IR

DA
X

SX
RA
SR
BX:

XOR A,R
XOR A,RX
XOR A,n
XOR A,(HL)
XOR A.(addr)
XOR A,(XX +dd)
XOR A,(XY + d)
XOR A,<addr>
XOR A,(SP + dd)
XOR A,(XXA + XXB)

10 101 r

11 011 101 10 101 rx

11 101 110 n

10 101 110

11 011 101 10 101 111 addr(low) addr(high)

11 111 101 10 101 XX d(low) d(high)

11 ¢11 101 10 101 110 d

11 111 101 10 101 000 disp(low) disp(high)

11 011 101 10 101 000 d(low) d(high)

11 011 101 10 101 bx

Field Encodings: ¢:
rx :
xx:
bx:

0 for IX, 1 for IY
100 for high byte, 101 for low byte
001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

Example: XOR A,(HL)

Before instruction execution:

AF:
HL:

Data memory:

After instruction execution:

4 8 szxhxpnc
2 4 9 4

AF:
HL:

5 0 I, 00x0x100
2 4 5 4

Data memory:

2454: 2454: 1 8

*

5 - 1 4 3

EXTENDED INSTRUCTION
EPU Internal Operation

Operation: EPU template

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), and template address. The format of the system stack after the trap is in­
dicated by the following figure:

» - t) $ * *■* t • ' *»

new SP

previous SP

template address (low)
template address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

1 byte

* "w*- •'

low address

high address

The format for the EPU template for this instruction is indicated in the following figure:

10001110 low address
****01 ID

****0000 high address
1 byte -*•

where ID is the two bit ID number specifying the EPU to process this instruction
and * indicates bits that encode the operation to be performed.

The template has no alignment restriction. The CPU fetches the template from external
memory using two word transactions if the template is aligned on an even address, or a
byte transaction followed by two word transactions if the template is unaligned.

Flags: No flags affected •

Exceptions: Extended Instruction •

Addressing
Mode Operation Instruction Format

EPU Internal 11 101 101 10 011 111 template 1 template 2 template 3

O pera tion template 4

The template is a 4-byte field.

5 - 14a
r

EXTENDED INSTRUCTION
Load Accumulator from EPU

Operation: EPU •*- template
A EPU

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed. Next
data from the EPU is loaded into the accumulator.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), and template address. The format of the system stack after the trap is in­
dicated by the following figure:

, V . *•. U * .• . / 4 * * < •# - • * - . » *5 %

new SP

previous SP

template address (low) low address
template address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

high address
1 byte -*■

The format for the EPU template for this instruction is indicated in the following figure:

10001110 low address
****00ID

. ****0000
****0000 high address
+ - 1 byte -*•

where ID is the 2-bit ID number specifying the EPU to process this instruction and * in­
dicates bits that encode the operation to be performed.

The template has no alignment restriction. The CPU fetches the template from external
memory using two word transactions if the template is aligned on an even address, or a
byte transaction followed by two word transactions if the template is unaligned. The CPU
places the data on ADg-AD-is into the accumulator.

Flags: S: Set if the byte loaded into the accumulator has a 1 in bit 7; cleared otherwise
Z: Set if the byte loaded into the accumulator is zero; cleared otherwise
H: Cleared
P: Set if the parity of the byte loaded into the accumulator is even; cleared otherwise
N: Cleared
C: Unaffected

Exceptions: Extended Instruction

5 - 1 4 5

Addressing
Mode Operation Instruction Format

A *- EPU 11 101 101 10 010 111 template 1 template 2 template 3

template 4

The template is a 4-byte field

5 - 1 4 6

EXTENDED INSTRUCTION
Load EPU from Memory

src = IR, DA, X, RA, SR, BX

Operation: EPU template
EPU *- src

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed on
the input operand. Next the data starting at the memory location determined by the
source calculation is fetched from memory and loaded into the EPU; successive trans­
fers are performed until the entire operand has been fetched. The number of bytes in the
source operand is encoded in the fourth byte of the template. For PC Relative
addressing mode, the address of the template is used instead of the address of the next
instruction.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the following instruction, Master Status
register (MSR), operand logical address, and template logical address. The format of the
system stack after the trap is indicated by the following figure:

new SP

previous SP

template address (low)
template address (high)
operand address (low)
operand address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

1 byte

low address

high address

t * '
>

The format for the EPU template for this instruction is indicated in the following figure:

0p001110
****01 ID
*★ *★ ***★
n - 1

1 byte •

low address

high address

where p encodes whether the data resides in program memory (p = 1; Relative ad­
dressing mode) or data memory; ID is the 2-bit ID number specifying the EPU to process
this instruction, * indicates bits that encode the operation to be performed, and n
specifies the number of bytes of data to be transferred to the EPU.

Neither the template nor the operand has an alignment restriction. The CPU fetches the
template from external memory using two word transactions if the template is aligned on
an even address, or a byte transaction followed by two word transactions if the template
is unaligned. Table 10-2 shows the sequences of transactions for the various cases of
data transfers to the EPU.

Flags: No flags affected

5- 147

Exceptions: Extended Instruction

Addressing
Mode Operation Instruction Format

IR: EPU M H L)

DA EPU — (addr)

X: EPU — (XX + dd)

RA EPU <addr>

SR: EPU — (SP + dd)

BX:
t f •• »•■'* •'

EPU — (XXA + XXB)

I Encodings: xx : 101 for (IX + dd).
bx: 001 for (HL + IX),

11 101 101 10 100 110 template 1 template 2 template 3

template 4

11 101 101 10 100 111 addr(low) addr(high) template 1

template 2 template 3 template 4

11 101 101 10 XX 100 d(low) d(high) template 1

template 2 template 3 template 4

11 101 101 10 100 100 disp(low) disp(high) template 1

template 2 template 3 template 4

11 101 101 10 000 100 d(low) d(high) template 1

template 2 template 3 template 4

11 101 101 10 b x 100 template 1 template 2 template 3

template 4

All templates are 4-byte fields.

S.

 ̂ t * >

■ V I '
0 , 4 i *

J

5 - 1 4 8

Operation:

j . T - i * '

EXTENDED INSTRUCTION
Load Memory from EPU

dst = IR, DA, X, RA, SR, BX

EPU template
dst — EPU

If the EPU Enable bit in the Trap Control register is set to 1, indicating an EPU is in the
system, then the 4-byte template embedded in the instruction is fetched from memory
and loaded into the EPU, thus indicating to the EPU the operation to be performed. Next
the data from the EPU is stored into memory starting at the location specified by the
destination address; successive transfers are performed until the entire operand has
been stored. The number of bytes in the source operand is encoded in the fourth byte of
the template. For PC Relative addressing mode, the address of the template is used
instead of the address of the next instruction.

If the EPU Enable control bit in the Trap Control register is cleared to 0, an EPU trap is
initiated. The trap causes the following information to be pushed onto the system stack
(in the following order): Program Counter (PC) of the next instruction, Master Status
register (MSR), operand address, and template address. The format of the system stack
after the trap is indicated by the following figure:

new SP

previous SP

template address (low)
template address (high)
operand address (low)
operand address (high)

MSR (low)
MSR (high)

PC (low)
PC (high)

1 byte

low address

high address

The format for the EPU template for this instruction is indicated in the following figure:

0p001110
000011 ID
★ ★ ★ ★ ★ ★ ★ ★
n - 1

1 byte -*

low address

high address

where p encodes whether the data resides in program space (p = 1; Relative address­
ing mode) or data memory; ID is the 2-bit ID number specifying the EPU to process this
instruction, * indicates bits that encode the operation to be performed, and n specifies
the number of bytes of data to be transferred from the EPU.

Neither the template nor the operand has an alignment restriction. The CPU fetches the
template from external memory using two word transactions if the template is aligned on
an even address, or a byte transaction followed by two word transactions if the template
is unaligned. Table 10-2 shows the sequences of transactions for the various cases of
data transfers from the EPU.

5-1 49

Flags: No flags affected

Exceptions: Extended Instruction /

Addressing
Mode Operation Instruction Format

IR:

DA:

X:

RA:

SR:

BX:

(HL) — EPU

(addr) EPU

(XX + dd) *- EPU

<addr> EPU

(SP + dd) EPU

(XXA + XXB) — EPU

11 101 101 10 101 110 template 1 template 2 template 3

template 4 I '

11 101 101 10 101 111 addr(low) addr(high) template 1

template 2 template 3 template 4

11 101 101 10 XX 101 d(low) ' d(high) template 1

template 2 template 3 template 4

11 101 101 10 100 101 disp(low) disp(high) template 1

template 2 template 3 template 4

11 101 101 10 000 101 d(low) d(high) template 1

template 2 template 3 template 4

11 101 101 10 bx 101 template 1 template 2
...

template 3

template 4

Field Encodings: XX : 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
bx : 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)

All templates are 4-byte fields.

5-150

Chapter 6.
Interrupts and Traps

6.1 INTRODUCTION

Exceptions are conditions that can alter the
normal flow of program execution. The Z280 CPU
supports three kinds of exceptions: interrupts,
traps, and resets.

Interrupts are asynchronous events generated by a
device external to the CPU; peripheral devices use
interrupts to request service from the CPU. Traps
are synchronous events generated internally in the
CPU by particular conditions that can occur during
the attempted execution of an instruction. Thus,
the difference between traps and interrupts is
their origin. A trap condition is always repro­
ducible by re-executing the program that created
the trap, whereas an interrupt is generally inde­
pendent of the currently executing task.

A hardware reset overrides all other conditions,
including interrupts and traps. It occurs when
the RESET line is activated, and it causes certain
CPU control registers to be initialized. Resets
are discussed in detail in Chapter 11.

6.2 INTERRUPTS

Two kinds of interrupts are activated by four dif­
ferent pins on the Z280 MPU. The nonmaskable
interrupt (NMI) is an interrupt that cannot be
disabled (masked) by software. Typically, NMI is
reserved for high-priority external events that
need immediate attention, such as an imminent
power failure. Maskable interrupts are interrupts
that can be disabled (masked) via software by
clearing the appropriate bits in the Interrupt
Request Enable field of the Master Status regis­
ter.

There are seven maskable interrupts in the Z280
MPU architecture. Three of these interrupts are
external inputs to the device (Interrupts A, 8,
and C); the other four maskable interrupts are
asserted by the on-chip peripherals. The seven
Interrupt Request Enable bits in the Master Status
register control which of the requested interrupts
are accepted. Interrupt requests are grouped as
listed in Table 6-1 , with each group controlled by
a separate Interrupt Request EnabLe bit. The list
is presented in order of decreasing priority, with
sources within a group listed in order of
decreasing priority.

The Enable Interrupt (El) instruction is used to
selectively enable the maskable interrupts (by
setting the appropriate bits in the MSR to 1) and
the Disable Interrupt (DI) instruction is used to
selectively disable interrupts (by clearing the
appropriate bits in the MSR to 0). When an
interrupt source has been disabled, the CPU
ignores any requests from that source. Because
maskable interrupt requests are not retained by
the CPU, the request signal on a maskable
interrupt line must be asserted until the CPU
acknowledges the request.

When enabling interrupts with the El instruction,
all maskable interrupts are automatically disabled
(whether previously enabled or not) for the
duration of the execution of the El instruction
and the immediately following instruction.

Interrupts are always accepted between instruc­
tions. The block move, block search, and block
I/O instructions can be interrupted after any
iteration.

Table 6-1. Grouping of Maskable Interrupt Requests

Members of Interrupt Group Enable bit in MSR

Maskable Interrupt A line 0
Counter/Timer 0, DMA Channel 0 1
Maskable Interrupt B line 2
Counter/Timer 1, UART Receiver, DMA Channel 1 3
Maskable Interrupt C line 4
UART Transmitter, DMA Channel 2 5
Counter/Timer 2, DMA Channel 3 6

6-1

fhe Z280 CPU has four modes for handlinq exter­
nally generated interrupts, selectable using the
1M instruction. The first three modes extend the
7.80 CPU interrupt modes tu accommodate the 7280
MPU's additiunal interrupt inputs in a compatible
fashion. The fourth mode allows more flexibility
in interrupt handling, providing support for
nested interrupts and a sophisticated vectoring
scheme. The on-chip peripherals always use this
fourth interrupt mode, regardless of which mode is
selected fur the external interrupts. The current
interrupt mode in effect can be read from the
Interrupt Status register.

6.2.1 Interrupt Mode 0

interrupt mode 0 is similar to the 8080 CPU
interrupt response mode. For mode 0, an exter­
nally generated interrupt (maskable or nonmask­
able) causes the User/System bit and the Single-
Step bit in the Master Status register to be
cleared to 0, thereby placing the CPU in system
mode with single-stepping disabled. All the
Interrupt Request Enable bits in the MSR are also
cleared to zero, which disables the maskable
interrupts. The previous condition of the MSR is
not saved.

Pur nonmaskable interrupts, the current value in
the Program Counter is saved on the system stack,
using the System Stack Pointer, and the constant
0066|_| is loaded into the Program Counter. Loca­
tion 0066̂ | in system program memory is, then,
the starting logical address of the nonmaskable
interrupt service routine; this logical address
can, of course, be translated into a physical mem-

... ory. address by the MMU. - ^ ̂ ^ ;

Lor maskable interrupts, the interrupting device
must place a Call or Restart instruction opcode on
the data bus during the interrupt acknuwledge bus
transaction. The Z280 CPU reads this opcode and
executes it; thus, the interrupting device,
instead of memory, provides the first instruction
of the service routine. Typically, a Restart
instruction is used, since the Restart opcode is
only one byte long, meaning that the interrupting
peripheral needs to supply only one byte of infor­
mation. Alternatively, a 3-byte call to any loca­
tion can be executed.

6.2.2 Interrupt Mode 1

In interrupt mode 1, the Z280 CPU automatically
executes a Restart to a fixed location when an
interrupt occurs. An externally generated inter­
rupt (maskable or nonmaskable) causes the User/
System bit, the Single-Step bit, and all Interrupt

Request Enable bits in the Master Status register
to be cleared to 0, which puts the CPU in system
mode with single-stepping disabled. fhe previous
condition of the MSR is nut saved. I he current
value in the Program Counter is pushed onto the
system-mode stack. for nonmaskable interrupts,
the constant 0066^ is then loaded into the Pro­
gram Counter; thus, 0066^ is the starting
address of the nonmaskable interrupt service rou­
tine. Tor maskable interrupts, the constant
0038^ is loaded into the Program Counter;
0038^ will be the starting address of the mask­
able interrupt service routine. These logical
addresses can be converted to physical addresses
by the MMU.

6.2.3 Interrupt Mode 2

Interrupt mode 2 is a vectored interrupt response
mode for maskable interrupts, wherein the inter­
rupting device identifies the starting location of
the service routine using an 8-bit vector read by
the CPU during the interrupt acknowledge cycle.

An externally generated interrupt (maskable or
nonmaskable) causes the User/System bit, the Sin­
gle-Step bit, and the Interrupt Enable Request
bits in the Master Status register to be cleared
to 0, which puts the CPU in system mode with
single-stepping disabled. The previous condition
of the MSR is not saved. The current value in the
Program Counter is pushed onto the system mode
stack.

Tor nonmaskable interrupts, the constant 0066^
is then loaded into the Program Counter; thus,
0066̂ | is the starting address of the nonmaskable
interrupt service routine. For maskable inter­
rupts, the programmer must maintain a table in
memory of the 16-bit starting addresses for every
maskable interrupt service routine. This table
can be located anywhere in the system mode data
memory address space, starting on a 256-byte mem­
ory boundary. When a maskable interrupt is
accepted, a 16-bit pointer into this table is gen­
erated in order to select the starting address of
the appropriate service routine from the table
entries. The peripheral generating the interrupt
places an 8-bit vector on the data bus in response
to the interrupt acknowledge. This vector becomes
the lower eight bits of the pointer into the
table. The upper eight bits of the pointer are
the contents of the I register. This pointer is
treated as an address in the system data memur>
space that can be translated to a physical address
by the MMU. The actual logical address of the
service routine is found by referencing the word
located at the address formed by concatenating the
I register's contents with the vector. Figure 6-1

6-2

illustrates the sequence of events fur processing
mode 2 maskable interrupts. A reset clears the l
register to all zeros.

CPU MEMORY

VECTOR
TABLE

NOTES:
1. Interrupt vector generated by peripheral is read by CPU during interrupt ' ‘

acknowledge cycle.
2. Vector combined with I register contents form 16-bit memory address

pointing to vector table.
3. Two bytes are read sequentially from vector table. These two bytes are

read into the PC.
4. Processor control is transferred to interrupt service routine and

execution continues.

Figure 6-1. Mode 2 Interrupt Processing

The Master Status register is not saved when proc­
essing interrupts under interrupt modes 0, 1 , and
2. If the Z280 CPU is running in the user mode
when an interrupt occurs, the MSR is automatically
changed to system mode when the interrupt is
acknowledged, without recording the previous user
mode of operation. Similarly, the single-step
mode and the maskable interrupts are automatically
disabled during interrupt processing, with no sav­
ing of the previous status. Thus, to resume proc­
essing of an interrupted user-mode program after
the execution of an interrupt service routine, the
operating system must change the Master Status
register in order to switch back to user mode; the
Return from Interrupt Long instruction can be used
for this purpose.

In interrupt mudes 0, 1 , and 2 , a nonmaskable
interrupt automatically disables all maskable
interrupts (as in the Z80 CPU). All of the Inter­
rupt Request Enable bits (bits 0 through 6 in the
MSR) are copied to a special register in the CPU
called the interrupt Shadow register. The Inter­
rupt Request Enable bits are then cleared to all
zeros. A Return from Nonmaskable Interrupt
instruction restores the previous settings of the
Interrupt Request Enable bits by copying the con­
tents of the Interrupt Shadow register into bits 0

through 6 of the MSR. The nesting is only one
level deep (again, as in the Z80 CPU).

for a Z80 Bus configuration of the Z280 MPU, only
one interrupt line (either Interrupt A, Interrupt
B, or Interrupt C) can be used if interrupt modes
0f 1, or 2 and the Z80 family peripherals are
used; Z8D peripherals being serviced on multiple
interrupt lines would all be affected by a Return
from Interrupt (RE II) instruction.

6.2.4 Interrupt Mode 3

Interrupt mode 3 exploits the advanced features of
the Z280 MPU architecture. When an interrupt
request is accepted (maskable ur nonmaskable), the
Master Status register, Program Counter, and a
16-bit "reason code" are automatically stored on
the system-mode stack. Next, new values for the
MSR and PC are fetched from a table in memor>
called the Interrupt/Trap Vector Table, thereby
determining the operating modes and starting
address of the service routine (see section 6.3).
The reason code for externally generated inter­
rupts is the contents of the data bus during the
interrupt acknowledge, and is usually supplied by
the interrupting device, fur 9-bit data bus con­
figurations of the Z280 MPU, the upper byte of the
reason code is all zeros, for interrupts from the
on-chip peripherals, the reason code is identical
to the vector address in the Interrupt/Trap Vector
Table, thereby identifying the interrupting
device. The Interrupt/Trap Vector Table Pointer
register in the CPU is used to reference the
Interrupt/Trap Vector Table during mode 3
interrupt processing.

Interrupt mode 3 is the intended mode of operation
when using the advanced features of the Z280 MPU
architecture, such as system and user modes and
sing le-stepping, since the Master Status register
of the interrupted task is automatically saved and
another loaded for the service routine. This
allows each service routine to be executed in the
appropriate mode without affecting the status of
the interrupted task. Also, vector tables can be
provided for both maskable and nonmaskable inter­
rupts when in mode 3.

Interrupt mode 3 is always used for processing
interrupts from the Z28G MPU's on-chip periph­
erals, regardless of which mode is selected for
the external interrupt requests.

I able 6 -2 summarizes interrupt processing for all
four modes.

illustrates the sequence of events fur processing
mode 2 maskable interrupts. A reset clears the l
register to all zeros.

CPU MEMORY

VECTOR
TABLE

NOTES:
1. Interrupt vector generated by peripheral is read by CPU during interrupt ' ‘

acknowledge cycle.
2. Vector combined with I register contents form 16-bit memory address

pointing to vector table.
3. Two bytes are read sequentially from vector table. These two bytes are

read into the PC.
4. Processor control is transferred to interrupt service routine and

execution continues.

Figure 6-1. Mode 2 Interrupt Processing

The Master Status register is not saved when proc­
essing interrupts under interrupt modes 0, 1 , and
2. If the Z280 CPU is running in the user mode
when an interrupt occurs, the MSR is automatically
changed to system mode when the interrupt is
acknowledged, without recording the previous user
mode of operation. Similarly, the single-step
mode and the maskable interrupts are automatically
disabled during interrupt processing, with no sav­
ing of the previous status. Thus, to resume proc­
essing of an interrupted user-mode program after
the execution of an interrupt service routine, the
operating system must change the Master Status
register in order to switch back to user mode; the
Return from Interrupt Long instruction can be used
for this purpose.

In interrupt mudes 0, 1 , and 2 , a nonmaskable
interrupt automatically disables all maskable
interrupts (as in the Z80 CPU). All of the Inter­
rupt Request Enable bits (bits 0 through 6 in the
MSR) are copied to a special register in the CPU
called the interrupt Shadow register. The Inter­
rupt Request Enable bits are then cleared to all
zeros. A Return from Nonmaskable Interrupt
instruction restores the previous settings of the
Interrupt Request Enable bits by copying the con­
tents of the Interrupt Shadow register into bits 0

through 6 of the MSR. The nesting is only one
level deep (again, as in the Z80 CPU).

for a Z80 Bus configuration of the Z280 MPU, only
one interrupt line (either Interrupt A, Interrupt
B, or Interrupt C) can be used if interrupt modes
0f 1, or 2 and the Z80 family peripherals are
used; Z8D peripherals being serviced on multiple
interrupt lines would all be affected by a Return
from Interrupt (RE II) instruction.

6.2.4 Interrupt Mode 3

Interrupt mode 3 exploits the advanced features of
the Z280 MPU architecture. When an interrupt
request is accepted (maskable ur nonmaskable), the
Master Status register, Program Counter, and a
16-bit "reason code" are automatically stored on
the system-mode stack. Next, new values for the
MSR and PC are fetched from a table in memor>
called the Interrupt/Trap Vector Table, thereby
determining the operating modes and starting
address of the service routine (see section 6.3).
The reason code for externally generated inter­
rupts is the contents of the data bus during the
interrupt acknowledge, and is usually supplied by
the interrupting device, fur 9-bit data bus con­
figurations of the Z280 MPU, the upper byte of the
reason code is all zeros, for interrupts from the
on-chip peripherals, the reason code is identical
to the vector address in the Interrupt/Trap Vector
Table, thereby identifying the interrupting
device. The Interrupt/Trap Vector Table Pointer
register in the CPU is used to reference the
Interrupt/Trap Vector Table during mode 3
interrupt processing.

Interrupt mode 3 is the intended mode of operation
when using the advanced features of the Z280 MPU
architecture, such as system and user modes and
sing le-stepping, since the Master Status register
of the interrupted task is automatically saved and
another loaded for the service routine. This
allows each service routine to be executed in the
appropriate mode without affecting the status of
the interrupted task. Also, vector tables can be
provided for both maskable and nonmaskable inter­
rupts when in mode 3.

Interrupt mode 3 is always used for processing
interrupts from the Z28G MPU's on-chip periph­
erals, regardless of which mode is selected for
the external interrupt requests.

I able 6 -2 summarizes interrupt processing for all
four modes.

Table 6-2. Interrupt Modes

Interrupt
Mode

Interrupt
Type

Saved Status
Information

0 Nonmaskable PC

0 Maskable
★

1 Nonmaskable PC

1 Maskable PC

2 Nonmaskable PC

2 Maskable PC

3 Nonmaskable MSR, PC, and
reason code

3 Maskable MSR, PC, and
reason code

Effect on MSR

System mode, Single-Step

and interrupts disabled

Fetched from Interrupt/

Trap Vector Table

Effect on Pc

Set to 66 h

Set to 38h

Set to 66 h

Fetched from address formed by i
register and interrupt vector

Fetched from Interrupt/

Trap Vector Table

*: Depends on instruction returned by interrupting device during acknowledge cycle.

6.3 TRAPS

The Z280 CPU architecture supports eight types of
traps, all of which are generated internally in
the MPU. The Privileged Instruction, System Call,
Access Violation, and Division Exception traps
cannot be disabled. I/O instructions can be spec­
ified as privileged instructions in the Trap Con­
trol register. The Extended Instruction, System
Stack Overflow Warning, Single-Step, and
Breakpoint-on-Halt traps can be selectively
enabled or disabled in the Trap Control register
and MSR.

Traps are processed by saving the current program
status (PC and MSR) on the system stack and load­
ing new program status from the Interrupt/Trap
Vector Table, in a manner similar to interrupts
using interrupt mode 3. The current interrupt
mode has no effect on trap processing. Thus, the
Interrupt/Trap Vector Table must be present in
memory and the Interrupt/Trap Vector Table Pointer
in the CPU must be initialized before executing
any instruction that could generate a trap. Traps
can occur only if executing Z280 MPU instructions
that are not part of the Z80 CPU instruction set
or if trap-generating features of the Z280 CPU
(such as stack overflow warnings) have been
explicitly enabled.

6.3.1 Extended Instruction Trap

The Extended Instruction trap occurs when the Z280
CPU encounters an extended instruction while the
EPU Enable bit in the Trap Control register is a

zero. For instructions that transfer data between
an EPU and memory, the following information is
pushed onto the system stack when processing the
Extended Instruction trap: the address of the next
instruction, the MSR, the address of the memory
operand, and the address of the template portion
of the extended instruction (in that order). For
Load Accumulator from EPU and EPU Internal Opera­
tion instructions, the address of the next
instruction, the MSR, and the address of the tem­
plate in the extended instruction are saved. The
PC and MSR values for the service routine are then
loaded from the Interrupt/Trap Vector Table. The
Interrupt/Trap Vector Table contains four dif­
ferent entries for Extended Instruction traps, one

for each type of extended instruction.

The Extended Instruction trap allows the program

to simulate (in software) the operation of an
in a trap service routine when no EPUs are present

in the system.

6.3.2 Privileged Instruction Trap

The Privileged Instruction trap occurs *he
Z280 CPU encounters a privileged instruction ^

in the user mode (the User/System bit *n
is set to 1). [/0 instructions can be Prlv* ^
instructions, depending on the contents 0 ^ Q(]

Trap Control register. The following infurm^ a
is saved on the system stack when proce® ^
Privileged Instruction trap: the address ^
instruction causing the trap and the MSR
order).

Th* Privileged Instruction tra
ating system environment by prevention ”Per'
rQgrams from executing instructions % h T '"°de

disrupt the system. that could

^ 3 #3 System Call Trap

The System Call trap occurs whenever a < w „
instruction is executed. The following w ^

tion ^ saved on the system stack when process?"'
, System Call trap: the addraas or th' "
instruction, the HSR, and th. ,6_b u

jperand encoded in the System Call instruction (i
that order). [ln

The System Call trap provides a means by which a
user mode program can request an operating system
function, thereby allowing for an orderly transi-
tion between the user and system modes.

Warning bit in the Trap Control register is auto-
ical ly cleared to 0 when this trap occurs in

order to prevent repeated traps.

System Stack Overflow Warning trap notifies

nrnhiJPerating 8y8tem of potential stack overflowproblems.

6.3.6 Division Exception Trap

6.3.4 Access Violation Trap

:heD? ; i r n Er ePti°n tFap °CCur3 executing
L ° l d I inStrUCti- divisor is zero
reore«? ^ CaSe) °r the quotient cannot be
represented in the destination precision (over-

b w.eCnaSt ? th; CPU flagS ^ S6t tP distinguish
fo t h e n h ° Sltuati°"s < • » the descriptions
for the Divide instructions in Chapter 5). The

owing information is saved on the system stack
when processing a Division Exception trap: the
a dress °f the Divide instruction and the MSR (in
that order).

The Access Violation trap occurs whenever the
Z280 MPU’s on-chip MMU detects an illegal memory
access. Specifically, this trap occurs when the
MMU's translation mode is enabled and either the
address to be translated implies using a page
descriptor register whose Valid bit is zero or the
access is a write to a page whose Write-Protect
bit is set to 1. The following information is
saved on the system stack when processing an
Access Violation trap: the address of the instruc­
tion causing the trap and the MSR (in that

order). Information about the logical address
that caused the fault is saved in the MMU (see
Chapter 7).

Che Access Violation trap facilitates the imple­
mentation of virtual memory systems using the
valid bit in the page descriptor registers and
allows information in memory to be write-
Protected.

6‘3*5 System Stack Overflow Warning Trap

e System Stack Overflow Warning trap can occur

Cont ^ ack O n f l o w Warning bit in the Trap
register is Sßt to 1. If so, then for

icant^US^ sys*;efn stack, the 12 most signif-
^ bits of the Stack Pointer are compared to
tr Contents of the Stack Limit register and a

inf ** Q^erated if they match. The following
P*or ma^ on ^ saved on the system stack when
(k^e88in9 a System Stack Overflow Warning trap
i8 ° 8econd System Stack Overflow Warning trap

ßrated): the address of the next instruction
the K5R (in that order). The Stack Overflow

6.3.7 Single-Step Trap

Two control bits in the Master Status register are
used to control Single-Step traps: the Single-Step
bit (bit 8) and the Single-Step Pending bit (bit

The Single-Step trap occurs when the
Single-Step Pending bit in the MSR is set to 1.
To enter single-step mode, wherein a Single-Step
trap is executed after each instruction, the
Single-Step bit in the MSR is set to 1. At the
beginning of instruction execution, the state of
the Single-Step Pending bit is checked; if it is
set, a Single-Step trap is executed. Then, the
state of the Single-Step bit is copied into the
Single-Step Pending bit and the instruction is
executed. If the instruction generates another
trap (such as a Privileged Instruction trap), that
trap handling routine is executed before the
Single-Step Pending bit is again checked and the
Single-Step trap is processed. This execution
sequence is illustrated in Figure 6-2. Note that
once the Single-Step bit gets set, a Single-Step
trap does not occur until after the next
instruction, because the Single-Step Pending bit
is checked before being loaded with the state of
the Single-Step bit. Single-Step traps are then
executed after each instruction until the
Single-Step bit in the MSR is cleared to 0.

The Single-Step Pending bit in the MSR is automat­
ically cleared by a Division Exception, Access
Violation, Privileged Instruction, or
Breakpoint-on-Halt trap, so that the saved MSR
value put on the stack as a result of trap
processing will have a 0 in bit position 9. For
each of those trap types, the address of the

Figure 6-2. Instruction Execution Sequence

actual trapping instruction is saved on the stack
(as opposed to the address of the next
instruction). The trapping instruction can be
re-executed upon returning from the trap service
routine, in which case another Single-Step trap is
not desired before instruction execution.
Similarly, the Single-Step Pending bit is
automatically cleared by a Single-Step trap, to
ensure that only one Single-Step trap occurs per
instruction.

When executing a Return From Interrupt Long
(RE TIL) instruction to return from an interrupt or
trap service routine, the Single-Step Pending bit
in the MSR for the interrupted program is the OR
of the Single-Step Pending bit in the MSR of the
service routine and the Single-Step Pending bit in
the MSR value that was saved during trap proces­
sing. Thus, if the service routine was being exe­
cuted in single-step mode, a Single-Step trap
occurs after execution of the RLIIL instruction,
before resumption of the interrupted program.

The following information is saved on the system
stack when processing a Single-Step trap: the
address of the next instruction and the MSR (in
that order).

The Single-Step trap facilitates the debugging of Z280
CPU code. The following text explains four methods
for entering single-step operations.

a. PUSH a PC value for the instruction you wish to
jump to.

PUSH an MSR value with the desired combination of
the Single-Step (SS) and Single-Step Pending
(SSP) bits.

Execute and RETIL instruction.

b. Execute a LDCTL instruction with the desired
combination of the SS and SSP bits.

c. Execute a System Call (SC) with an identifier that
you reserve for a single-step entry.

POP the identifier and branch to the remaining
single-step code routine.

POP the MSR.
Set the desired combinations of SS and SSP.
PUSH the new MSR.
Execute the RETIL instruction.

This method can be used only in the User Mode of
operation.

d. Use the “Breakpoint-on-HaIt" trap by substituting
a HALT opcode for the first byte of an instruction
where single-stepping is to start. The trap service
routine should look something like this:

POP the MSR.
Set the desired combinations of SS and SSP.
PUSH the MSR.
Restore the instruction byte that the HALT opcode

replaced.
Execute the RETIL instruction.

Both interrupt and trap routines can be single-stepped
by setting the appropriate SS and SSP combination in
the MSR entry in the Interrupt/Trap Vector Table.

Instructions that cause a trap but will be re-executed
(ie: privileged, divide, page fault) automatically
clear the SSP bit in the PUSHed MSR. This ensures
that only one single-step trap will occur for these
instructions.

6-6

fritz
Notiz
Page 6-4, 6-5 ist missing

Table 6-3. Trap Types

Can be
Trap Type Disabled Status Saved

Extended Instruction Yes Address of next instruction
MSR value
Address of operand in memory (if applicable)
Address of EPU template

Privileged Instruction No Address of instruction causing trap -
MSR value

System Call No Address of next instruction
MSR value
16-bit reason code from SC instruction

„ Access Violation
i

No Address of instruction causing trap
MSR value

System Stack Overflow Yes Address of next instruction
MSR value

Division Exception No Address of instruction causing trap
MSR value

Single-Step Yes Address of next instruction
MSR value

Breakpoint-on-Halt Yes Address of Halt instruction
MSR value

Table 6-4. Interrupt Acknowledge Encoding
for Z80 Bus Configuration

a d 2 AD1 Interrupt Being Acknowledged

0 0 Interrupt A

0 1 Nonmaskable Interrupt

1 0 Interrupt B
1 1 Interrupt C

6.3.8 Breakpoint-on-Halt Trap

The Breakpoint-on-Halt trap occurs if a Halt
instruction is encountered while the Breakpoint-
on-Halt Enable bit in the MSR is set to 1. The
following information is saved on the system stack
when processing a Breakpoint-on-Halt trap: the
address of the Halt instruction and the MSR (in
that order).

The Breakpoint-on-Halt trap provides a breakpoint
facility that is useful in debugging environments
in which breakpoints on instruction boundaries are
desired.

The trap types and the status saved during the
processing of each trap are summarized in Table
6-3.

6.4 INTERRUPT AND TRAP HANDLING

The Z280 CPU response to an interrupt request or
trap condition consists of up to five steps:
acknowledging the external request (externally-
generated interrupts only), saving current program
status, loading new program status, executing the
service routine, and returning to the interrupted
program. Interrupts are accepted and processed
between instructions, with the exception of the
block move, search, and I/O instructions, which
can be interrupted between any iteration. Traps
are detected during instruction execution, with
the exception of the Single-Step trap, as
described previously. Thus, a trap condition is
processed before handling any pending interrupts.

6.4.1 Interrupt Acknowledge

An interrupt acknowledge bus transaction is
.

required only for externally-generated inter­
rupts. The main effect of the interrupt acknowl­
edge is to establish communication between the
requestor and the Z280 CPU.

For Z80 Bus configurations of the Z280 MPU, the
type of interrupt being acknowledged is indicated
on bus lines AD*) and AD2 while the Address Strobe
is being asserted during the interrupt acknowledge
cycle, as per Table 6-4.

6-7

n

For the ZQO Bus configurations of the Z280 MPU, no
external acknowledge cycle is generated for
nonmaskable interrupts in interrupt modes 0, 1 ,
and 2 , or for maskable interrupts in interrupt
mode 1. For maskable interrupts in interrupt
modes 0, 2, and 3, and for nonmaskable interrupts
in mode 3, 8-bit data is read from the ADQ-AD7 bus
lines during the acknowledge cycle; this data is
used as dictated by the interrupt mode in effect,
as described in section 6.2. For maskable
interrupts in interrupt mode 0, successive bytes
are read on ADQ-AD7 until a complete instruction
has been fetched, via repetition of the
acknowledge cycle.

For Z-BUS configurations of the Z280 MPU, any
interrupt from an external source is
acknowledged. The type of interrupt being
acknowledged is indicated by the STQ-ST3 status
lines during the acknowledge cycle. A word of ;
data is read from the address./data bus during the
acknowledge cycle and used as dictated by the
interrupt mode in effect. For interrupt modes 2
and 3, the lower byte of this data is used as the
interrupt vector. For maskable interrupts in
interrupt mode 0, successive bytes are read on
ADQ-AD7 until a complete instruction has been
fetched, via repetition of the acknowledge cycle.

Acknowledge cycles are always executed in system
mode, regardless of the mode of the interrupted
program, The MSR of the interrupted program is
not affected by this change in mode. The CPU
stays in system mode until the start of execution
of the service routine. In interrupt modes 0, 1,
and 2 , the service routine starts in system mode;
in interrupt mode 3, the MSR of the service rou­
tine is determined by the contents of the Inter-

- \ * . s * / . ' • f ' w r *•' t ' • • • : '

rupt/Trap Vector Table.

saved when processing maskable interrupts. For
interrupts in interrupt mode 1 or 2, the Program
Counter is automatically saved. For interrupts in
interrupt mode 3, the Program Counter and MSR of
the interrupted task are saved, followed by the
"reason code" (Figure 6-3). For external inter­
rupt requests, the reason code is the value read
from the data bus during the interrupt acknowledge
cycle; the upper byte of the reason code is all
zeros for 8-bit data bus (Z80 Bus) configurations
of the Z280 MPU. For interrupts from the on-chip
peripherals, the reason code is the offset address
in the Interrupt/Trap Vector Table that
corresponds to the MSR value entry for that
interrupt type.

LOW ADDRESS

HIGH ADDRESS

Figure 6-3. Format of Saved Status on
System Stack Due to a Mode 3 Interrupt

The Program Counter value saved during interrupt
processing is the address of the next instruction
in the interrupted routine, except for interrupts
during block move, block search, and block 1 /0
instructions. The block instructions can be
interrupted between any one iteration of their
operation, in which case the PC value saved is the
address of the block instruction itself.

Interrupt requests from the on-chip peripherals
never generate an acknowledge cycle and are always
processed using interrupt mode 3. Similarly,
traps do not generate acknowledges.

6.4.2 Status Saving

During exception processing, the status of the
interrupted program is saved on the system stack.
In interrupt mode 0, the Program Counter is auto­
matically saved when processing nonmaskable inter­
rupts; the instruction returned by the peripheral
device will determine what status information is

The status saved as a result of a trap depends on
the type of trap being executed, as noted in
Figure 6-3. The PC and MSR values are always
saved during trap processing, along with other
trap-dependent information.

If any memory write operation involved in saving
status information during interrupt or trap proc­
essing causes a memory access violation, a special
"fatal condition" is entered, as described in sec­
tion 6.6.

6-8

6.4,3 Loading New Program Status

After saving the status of the interrupted pro­
gram, new program status values (i.e., new values
for the PC and MSR) are automatically loaded, in
accordance with the interrupt mode and any data
read during the acknowledge cycle. This new pro­
gram status determines the operating modes and
starting address of the service routine.

For externally generated interrupts in interrupt
modes 0, 1, and 2, the Master Status register is
automatically modified to specify system mode with
the Single-Step trap and all maskable interrupts
disabled. For externally generated interrupts in
interrupt mode 3, all internally generated inter­
rupts, and all traps, the new MSR value is loaded
from the Interrupt/Trap Vector Table.

For externally generated maskable interrupts proc­
essed using interrupt mode 0, the first instruc­
tion of the service routine is supplied by the
interrupting device. This must be a Call or
Restart instruction that loads the PC with the
starting address of the service routine. For non­
maskable interrupts in interrupt mode 0, the PC is
set to 0066|_|, and all maskable interrupts are
automatically disabled.

in interrupt mode 1, the PC is set to 0038^ for
externally generated maskable interrupts and to
0066^ for nonmaskable interrupts.

For externally qenerated maskable interrupts in
interrupt mode 2, the PC is fetched from an Inter­
rupt Vector table in system data memory; the logi­
cal address of the fetched PC value is formed by
concatenating the contents of the I register with
the 8-bit vector returned by the interrupting
device during the acknowledge cycle. For nonmask­
able interrupts, the PC is set to 0066^.

For externally generated interrupts in interrupt
mode 3, all internally qenerated interrupts, and
all traps, the PC and MSR values for the service
routine are fetched from the Interrupt/Trap Vector
Table (see section 6.5). The new value for the
MSR is at a fixed location in this table. Exter­
nally generated interrupts can be vectored or
nonvectored in interrupt mode 3, as determined by
the contents of the Interrupt Status register.
For nonvectored interrupts and all traps, the new
PC value is at a fixed location in the Inter­
rupt/Trap Vector Table; for vectored interrupts,
the location of the new PC in the table is depen­
dent on the 8-bit vector read durinq the acknowl­
edge cycle.

The value loaded into the Proqram Counter during
exception processing is a logical address that can

be translated to a physical address by the MMU
when the CPU fetches the first instruction of the
service routine.

6.4.4 Executing the Service Routine

In interrupt mode 0, the interrupting device pro­
vides the Restart or Call instruction that begins
the service routine; this instruction saves the
Program Counter value of the interrupted routine
and provides the address of the service routine.
In the other interrupt modes and for traps, the
starting address of the service routine is deter­
mined automatically during interrupt processing,
as described in the preceding section. This pro­
gram is now executed.

For externally generated interrupts in interrupt
modes 0, 1 , and 2 , all maskable interrupts are
automatically disabled; therefore the service rou­
tine is protected from additional interrupts until
the MSR is altered via a Load Control, Enable
Interrupt, Return from Nonmaskable Interrupt, or
Return from Interrupt Long instruction. Inter­
rupts in mode 3 and all traps cause a new MSR to
be loaded from the Interrupt/Trap Vector Table;
the value of this MSR determines which interrupts
are enabled during the service routine. Service
routines that enable interrupts before exiting
permit interrupts to be handled in a nested fash­
ion.

6.4.5 Returning from a Service Routine

Three different instructions are available for
returning from an interrupt or trap service rou­
tine: Return from Nonmaskable Interrupt, Return
from Interrupt, and Return from Interrupt Long.
All three are privileged instructions, since they
must retrieve values from the system stack.

The Return from Nonmaskable Interrupt (RE T N)
instruction is used to return from nonmaskable
interrupts in interrupt modes 0, 1, and 2. This
instruction pops the word on the top of the stack
into the Program Counter, restoring the Program
Counter value present before the interrupt, and
loads the Interrupt Request Enable bits in the MSR
with the contents of the Interrupt Shadow regis­
ter. .

The Return from Interrupt (RETI) instruction is
used to return from externally generated maskable
interrupts in interrupt modes 0, 1 , and 2. This
instruction pops the word on the top of the stack
into the Program Counter, which restores the Pro­
gram Counter value present before the interrupt.
The RETI instruction also causes a special bus

6-9

transaction that fetches this instruction from
external memory (reqardless of whether it is con­
tained in the on-chip cache), with the appropriate
bus control and status signals to indicate that an
instruction fetch is occurring; this is used to
reset the interrupt logic of the Z80 family
peripherals.

The Return from Interrupt Long (RETIL) instruction
is used to return from interrupts in interrupt
mode 3 and all traps, since it causes both the MSR
and PC values to be popped from the stack. If
this instruction is used to return from an inter­
rupt processed with another interrupt mode (e.g.,
if RETIL is used to return from a mode 2, instead
of a mode 3, interrupt), an MSR value must be
pushed onto the stack in the service routine prior
to execution of the RETIL. For interrupts in
interrupt mode 3 and all traps, the service

'routine must pop the reason code or other -
trap-dependent information off the stack before
executing RETIL. Unlike RET I, RETIL causes no
special bus activity and, therefore, cannot be
used to automatically reset Z80 family periph­
erals.

6.5 INTERRUPT/TRAP VECTOR TABLE

During interrupt processing under interrupt mode 3
and all trap processing, the PC and MSR values
that determine the starting location and operating
modes of the appropriate service routine are
fetched from a table in memory called the Inter-
rupt/Trap Vector Table. This table holds an MSR
and PC value for the service routine for every
possible type of interrupt and trap. The particu­
lar values fetched from the table during exception
processing are a function of the type of exception
that occurred and, for vectored external inter­
rupts, the vector returned by the peripheral dur­
ing the acknowledge cycle. The format of the
Interrupt/Trap Vector Table is given in Table
6-5. Each entry in the Interrupt/Trap Vector
Table consists of two words— an MSR value followed
by a PC value. If an external interrupt is vec­
tored, as determined by the contents of the Inter-
rupt Status register, the 8-bit vector returned by
the peripheral is used as an index into a list of
up to 128 possible PC values for the service
routine; only even-valued vectors are supported by
the Z280 CPU architecture. Thus, for a vectored
interrupt, there is only one starting MSR value
for all the possible service routines, but up to
128 potential PC values. The NMI and Interrupt A
requests share the same vectors.

For example, suppose an interrupt is requested by
the on-chip counter./timer 0. If that interrupt

request is enabled (bit 1 in the MSR is set to 1),
the interrupt is processed as follows: the current
PC and MSR values are saved on the system stack;
an identifier word with the value 14j_| is saved
on the system stack; a new value for the MSR is
fetched from location 14^ in the Interrupt/Trap
Vector Table; a new value for the PC is fetched
from location 16^ in the Interrupt/Trap Vector
Table; execution of the service routine is begun.

If an interrupt request is received from an
external source on interrupt line A under
interrupt mode 3 and that interrupt request is
enabled (bit 0 in the MSR is set to 1), then
interrupt processing proceeds as follows:

• An acknowledge cycle is executed, during which
data is read from the external data bus.

« The current PC and MSR values are saved on the
system stack

• The data read from the bus during the
acknowledge cycle is saved on the system stack
as the identifier word.

• A new value for the MSR is fetched from
location 08^ in the Interrupt/Trap Vector
Table

e A new value for the PC is fetched either from
location 0A in the Interrupt/Trap Vector Table
(if bit 13 of the Interrupt Status reqister is
0, indicating that Interrupt A is not vectored)
or from the location in the Interrupt/Trap
Vector Table found by adding the lower byte of
the data read from the bus during the
acknowledge cycle (the interrupt vector) to
70^ (if bit 13 of the Interrupt Status
register is 1, indicating that Interrupt A is
vectored).

• Execution of the service routine Is begun.

For vectored interrupts, the interrupt vector
returned during the acknowledge cycle must be
even-valued in order to reference a valid PC value
in the Interrupt/Trap Vector Table.

The Interrupt/Trap Vector Table Pointer register
must be initialized to hold the most significant
12 bits of the startinq physical address of the
Interrupt/Trap Vector Table. The Interrupt/Trap
Vector Table must start on a 4K byte boundary in
physical memory (that is, a memory address whose
12 least significant bits are all zeros).

6-10

Table 6-5. Interrupt/Trap Vector Table Format

an

Address in Table
(Hexadecim al) Contents

00 R eserved

04 NMI vector

08 Interrupt line A vector

OC Interrupt line B vector

10 In terrupt line C vector

14 C ounter/T im er 0 vector

18 C ounter/T im er 1 vector

1C R eserved

20 C ounter/T im er 2 vector

24 . D M A channe l 0 vector

28 D M A channe l 1 vector 'fe:

2C D M A channe l 2 vector

30 D M A channe l 3 vector

34 UART receiver vector

38 UART transm itter vector

3C Single-Step trap vector

B reakpoin t-on-H alt trap vector :

44 Division Exception trap vector

48 Stack O verflow W arning trap vector

4C A ccess V iolation trap vector

5 0
System Call trap vector

54 Priv ileged Instruction trap vector

58 EPU M em ory Extended Instruction trap vec to r

5C M em ory <- EPU Extended Instruction trap vector

60 A ♦- EPU E xtended Instruction trap vector

64 EPU Internal O pera tion Extended Instruction trap vecto r

6 8 -6 C Reserved

7 0 -1 6 E 128 P rogram C ounter values for NMI and in te rrup t line A vecto rs (MSR va lues from pos ition 04 and

08 in this table, respectively)

170 -26E 128 P rogram C ounter values for in terrupt line B (MSR value from position 0C in th is table)

2 7 0 -3 6 E 128 P rogram coun te r values for in terrupt line C (MSR va lue from position 10 in th is table)

... 6.6 THE FATAL CONDITION

During interrupt and trap processing, the CPU
automatically attempts to save status information
about the interrupted program on the system
stack. If the MMU is enabled, an access violation
can occur during the status saving process if a
write is attempted to an invalidated page or to a
page that is write-protected. Detection of an
access violation durinq the status savinq process
causes the Z280 CPU to enter a special fatal con­

dition; the following steps are taken automati­
cally when the fatal condition occurs: the current
PC contents are written to the HL register, the
current MSR contents are written to the DE regis­
ter, all the Interrupt Request Enable bits in the
MSR are cleared to 0, and the CPU enters a Halt
state. This Halt state is identical to the Halt
state caused by the execution of a Halt instruc­
tion, with one exception: a Halt state induced by
a fatal condition can be exited only by a reset.

6-11

t

Chapter 7.
Memory Management Unit

7.1 INTRODUCTION 7.2 MMU ARCHIFECTORE

The Z280 MPUs include an on-chip paged Memory Man-
agement Unit (MMU), which allows the MPUs to
address more than 64K bytes of physical memory.
Memory management with the MMU involves two
issues: memory allocation and memory protection.
The allocation of memory is controlled by allowing
the MMU to translate the 16-bit logical addresses
from the Z280 CPU into the 24-bit physical
addresses output by the MPU. Thus, a given
programming task can be relocated to any area of
physical memory, regardless of the Logical
addresses used by that task. Durinq this
translation process, the MMU also monitors the
type of memory access beinq made; the MMU can
inhibit accesses or write-protect memory areas,
thereby allowing memory to be protected from
unwanted or unintended modes of use.

The MMU partitions the 64K logical address space
of the Z280 CPU into fixed-sized memory pages and
maps those pages into the physical address space.
Separate mapping facilities are available for the
system and user modes of operation; translation
can be performed in either one or in both modes.
Optionally, the MMU provides for separating
instruction fetches from data references, which
allows the user to define up to four different
logical address spaces: system mude program, sys­
tem mode data, user mode program, and user mode
data. If the proqram and data address spaces are
separated, the MMU uses a page size of 8192 (8I<)
bytes; if not, the page size is 4096 (4K) bytes.

The MMU is programmed via I/O references to its
control registers. The MMU records which pages
have been modified and can inhibit the cache mech­
anism to prevent the writinq of data to the
on-chip cache. Access Violation traps are gener­
ated when an error condition is detected (such as
an attempted write to a read-only page). Access
violations cause the currently executing instruc­
tion to be aborted, and allow that instruction to
be restarted in a manner compatible with virtual
memory requirements. Upon reset, the MMU is dis­
abled, allowing logical addresses to pass through
to physical memory without translation.

The Z280 MMU consists of two sets of 16 page
descriptor registers, used to translate addresses
and assign memory attributes on a page-by-page
basis, and a Master Control register that governs
MMU operation. There is one page descriptor reg­
ister associated with each logical page of mem­
ory. One set of 16 page descriptor registers is
dedicated to system mode operation and the other
set to user mode operation. Ihe MMU registers are
accessed using 1/0 instructions.

. < i * *>••• *

When translation is enabled for a particular mode
(system or user), as determined by the contents of
the MMU Master Control register, the MMU trans­
lates memory addresses whenever the CPU is operat­
ing in that mode, using the set of page descriptor
registers dedicated to that mode. However, there
are two exceptions to that rule:

When the CPU is fetching program status infor­
mation from the Interrupt/Trap Vector Table in
response to an interrupt under interrupt mode 3
or a trap, the Interrupt Trap Vector Table
Pointer register is used to determine the phys­
ical address of the program status information.

• The Load in User Program (LDUP) and Load in
User Data (LOUD) instructions are executed in
system mode but use the user mode page descrip-

... tor registers to translate the data operand1s
address.

Memory addresses generated by the on-chip DMA
channels are 24-bit physical addresses that are
not translated by the MMU. Only memory addresses,
and not I/O addresses, are translated by the MMU.

While an address is being translated, any attri­
butes associated with the logical page containing
that address are checked. The attributes for a
page are determined by the contents of that page’s
page descriptor register. Pages can be write-
protected and/or made non-cacheable using these
attributes. A non-cacheable page is one whose
contents cannot be copied into the on-chip cache
during program execution; thus, accesses to loca-

7-1

7.3 PAGE DESCRIPTOR REGISTERStions in non-cacheable pages always use the exter­
nal bus. This attribute is useful in multiproces­
sor systems with shared memory areas, where each
processor must be able to access the most current
version of the information in the shared memory
area, or in systems with memory-mapped I/O
devices. The MMU also maintains a status bit for
each page, which indicates if that page has been
modi fied.

<

Each page descriptor register contains a Valid
bit, which indicates if that descriptor contains
valid information. Attempts to access an address
contained in a page with an invalid descriptor and
attempts to write to an address in a page that is
write-protected generate Access Violation traps.
An Access Violation trap causes the currently exe­
cuting instruction to be aborted, facilitating the
development of virtual memory systems. A special
1 /0 port in the MMU (Invalidation 1/0 port) is
available for resetting the valid bits in a whole
group of page descriptor registers with a single
I/O instruction.

For system mode operation, user mode operation, or
both, the MMU can be configured to separate
instruction fetches from data fetches, therefore
separating the proqram address space from the data
address space. This allows a Z280 MPU proqram to
contain up to 64K bytes of code and operate on up
to 64K bytes of data. With the proqram/data sep­
aration mode in effect, the 16 page descriptor
registers for that mode are partitioned into two
sets of eight descriptors: one set for instruction
fetches and one set for data fetches. An instruc­
tion fetch or data reference using the PC relative
addressing mode is translated using the page
descriptor registers associated with the program
address space; data accesses using other addres­
sing modes and accesses to the interrupt vector
table under interrupt mode 2 use the page descrip­
tor registers associated with the data address
space. In this mode, pages are 8K bytes long.
Two control bits in the MMU Master Control regis­
ter specify independently whether program/data
separation is in effect for system mode and
whether program/data separation is in effect for
user mode.

When translation is disabled for a particular mode
(system or user), the MMU does not translate mem­
ory addresses or perfurm attribute checking while
the CPU is operating in that mode. For a memory
access when the MMU is disabled, the logical mem­
ory address passes through the MMU without trans­
lation to physical address outputs Aq-A^ and
physical address outputs are zeros.
When the MMU is disabled all memory is assumed to
be both writeable and cacheable.

There are two sets of 16 page descriptor reqisters
in the MMU, one set for system mode operation and
one set for user mode operation. Each page
descriptor register is 16 bits lonq, consisting of
a 12-bit page frame address field and a 4-bit
attribute field (Figure 7-1).,

15 0
r — r i i i i 1 T V
1 PAGE FRAME ADDRESS V WP c M I
I ...-L 1 ■ J — 1

Figure 7-1. Page Descriptor Register

The page frame address field contains the most
significant 12 bits (if program/data separation is
not in effect) or most significant 11 bits (if
program/data separation is in effect) of the
starting physical address for that page. The low-
order bits of the page's base physical address are
assumed to be all zeros; thus, pages always start
on 4K byte boundaries in physical memory without
program/data separation, or 8K byte boundaries
with program/data separation.

The least significant four bits of each page
descriptor register are attribute and status bits
for that page, as described below:

Modified Bit (M). This status bit is automati­
cally set to 1 whenever a write is successfully
performed to a logical address in the page; it can
be cleared to 0 only by writing to the page
descriptor register via a software command. If
the Valid bit is 0, the contents of this bit are
undefined.

• * •* ^ , * ' . * . » » •

Cacheable Bit (C). When this bit is set to 1,
information from the page can be stored in the
on-chip cache memory. When this bit is cleared to
0f the cache control mechanism is Inhibited from
retaining a copy of information from the page.

Write-Protect Bit (WP). When set to 1, write
operations to addresses in the page generate an
Access Violation trap and the write is inhibited.
When this bit Is cleared to 0, all valid accesses
to the page are allowed.

Valid Bit (V). This bit is set to 1 to indicate
that the page descriptor register contains valid
information about the page. When cleared to 0,
all accesses to addresses in the page are
inhibited and generate Access Violation traps.

7-2

7.4 ADDRESS TRANSLATION

If address translation is enabled, logical
addresses are translated to physical addresses in
one of two ways, depending on the program/data
separation mode, as specified in the MMU Master
Control register. The format of the page descrip­
tor registers is independent of which mode is in
effect.

7.4.1 Address Translation Without Program/Data
Separation

When program/data separation is not in effect, the
16-bit logical address from the CPU is divided
into two fields, a 4-bit index field used to
select one of the 16 page descriptor registers,

and a 12-bit offset field that forms the lower 12
bits of the resulting physical address. The upper
12 bits of the physical address are provided by
the page frame address field of the selected page
descriptor register. The pages are 4K bytes
long. This translation mechanism is illustrated
in Figure 7-2. Page descriptor register 0 is the
descriptor for logical addresses ooooH to
OFF F |̂|, page descriptor register 1 is the
descriptor for logical addresses 1000H to
IFllf-l, and so on. Thus, the index portion of
the logical address selects the page descriptor
register. The page frame address field of that
page descriptor register then determines the
actual starting address for that page in physical
memory; the low-order 12 bits of the logical
address specify the offset within that 4K byte
page.

15 1211

i}

LOGICAL
ADDRESS

DADE DESCRIPTOR
REGISTERS

PHYSICAL
ADDRESS

Figure 7-2. Address Translation without Program/Data Separation

7-3

7.4.2 Address Translation With Program/Data
Separation

When program/data separation is in effect, the
16-hit logical address from the CPU is divided
into a 3-bit Index and a 13-bit offset. A Pro-
gram/Data address control signal from the CPU
becomes the most significant bit of the 4-bit
index that selects the appropriate page descriptor
register; the three most significant bits of the
logical address form the least significant bits of
this index. The upper 11 bits of the page frame
address field in the selected page descriptor reg­
ister provide the upper 11 bits of the resulting
physical address. The least significant 13 bits
of the logical address form the low order 13 bits
of the physical address, as illustrated in Figure
7-3. Page descriptor register 0 is the descriptor
for logical addresses 0000|_j-1FFF̂ in the data

address space, Page descriptor register 1 is the
descriptor for logical addresses 2G00̂ j-3FFF|̂
in the data address space, and so on through page
descriptor register 7; page descriptor register 8
is the descriptor for logical addresses
OOOO^-IFFF^ in the program address space, paqe
descriptor register 9 is the descriptor for logi­
cal addresses 2000̂ -3FFF[-| in the program
address space, and so on. Thus, each page is 8K
bytes long, where the starting address of the page
in physical memory is determined by the page frame
address field in the selected page descriptor reg­
ister, and the 13 least significant bits of the
logical address specify the offset within that 8K
byte page. In this mode, the least significant
bit of the paqe frame address field in each page
descriptor register is not used; this bit is modi­
fied by translation, and values read from it are
unpredictable.

PROGRAM/
DATA BIT

16-BIT LOGICAL PROGRAM
OR DATA ADDRESS

\

l PROGRAM PAGE
(DESCRIPTOR REGISTERS

\

\ DATA PAGE
(DESCRIPTOR REGISTERS

/

24-BIT PHYSICAL PROGRAM
OR DATA ADDRESS

Figure 7-3. Address Translation with Program/Data Separation

Besides the two sets of 16 page descriptor regis­
ters, the MMU contains a Master Control register
and a Page Descriptor Register Pointer. The
16-hit Master Control register controls the opera­
tion of the MMU; the 8-bit Page Descriptor Regis­
ter Pointer is used to select a particular page
descriptor register during 1/0 accesses to the
descriptors.

The 16-bit MMU Master Control register is shown in
figure 7-4. This register consists of four con­
trol bits and a 5-bit status field; the fields in
this register are described below:

. .

4

15 0

7.5 MMU CONTROL REGISTERS

i 1 --------r— 1
UPD 1 1 STE SPD 1 1 1 1 1

____ L _
PFI

1 1 —1

Figure 7-4. MMU Master Control Register

\ - ♦ « ‘ * . »

through 15, and data references using other
addressing modes use system-mode Page Descriptor
registers 0 through 7; the page size is 8K bytes.
’When this bit is cleared to 0, both instruction
and data fetches use system-mude Page Descriptor
registers 0 through 15 and the page size is 4K
bytes.

Paqe Fault Identifier (PFI) Field, This 5-bit
status field latches an identification number that
indicates which Page Descriptor register was being
accessed when an access violation was detected.
The encoding used is given in Table 7-1.

The MMU Master Control register is programmed via
a word output instruction to 1 /0 port address
FFxxFO^ (where Mx" indicates a "don't care") and
is read via a word input instruction to that same
port. A reset clears this register to all zeros,
thereby disabling address translation and attri­
bute checking in the MMU. Bits 5 through 9, 12,
and 13 in this register are not used.

User Mode Translate Enable (UTE). When this bit
is set to 1 , logical memory addresses generated
during user-mode operation are translated to phys­
ical addresses with attribute checking. When this
bit is cleared to 0, the logical addresses are
passed through the MMU to the address outputs with
zeros in the most significant bits and no attri­
bute checking or modified bit setting is per­
formed.

User Mode Prograin/Data Separation Enable (UPD).
When this bit is set to 1, instruction fetches and
data accesses using the PC Relative addressing
mode use user-mode Page Descriptor registers 8
through 15, and data references using other
addressing modes use user-mode Page Descriptor
registers 0 through 7; the page size is 8K bytes.
When this bit is cleared to 0, both instruction
and data fetches use user-mode Page Descriptor
registers 0 through 15 and the page size is 4K
bytes.

System Mode Translate Enable (STE). When this bit
is set to 1 , logical memory addresses generated
during system-mode operation are translated to
physical addresses with attribute checking. When
this bit is cleared to 0, the logical addresses
are passed through the MMU to the address outputs
with zeros in the most significant bits and no
attribute checking or modified bit setting is per­
formed.

The Page Descriptor registers in the MMU are
accessed using the Page Descriptor Register
Pointer (PDR Pointer). The 8-bit PDR Pointer con­
tains the address of one of the Page Descriptor
registers; the encoding is given in Table 7-1.
The permissible contents of the PDR Pointer are
00|_| through 1 Fĵj . The PDR Pointer is accessed
via byte 1 /0 instructions to port address
FFx x F1h .

Table 7-1. Page Descriptor Register Addresses

PDR Pointer or
PFI Field

Selected Page
Descriptor Register

00 User Page Descriptor 0
01
•
•

User Page Descriptor 1
•
•

•

0E

•

User Page Descriptor 14
OF User Page Descriptor 15
10 System Page Descriptor 0
11
•

System Page Descriptor 1
•

• •
• •

1E System Page Descriptor 14
1F System Page Descriptor 15

System Mode Program/bata Separation Enable (SPD).
When this bit is set to 1, instruction fetches and
data accesses using the PC Relative addressing
mode use system-mode Page Descriptor registers 8

7-5

7.6 ACCESSING PAGE DESCRIPTOR REGISTERS

Data is read or written tu the Page Descriptor
registers via I/D instructions. Three different
types of accesses are allowed, each of which is
implemented with its own unigue 1 /0 port address.

7.6.1 Descriptor Select Port

Moves of one word of data to' or from a Page
Descriptor register are accomplished through I/O
port address FFxxF5^, the Descriptor Select
Port. The Page Descriptor register accessed is
the one addressed by the PDR Pointer; the PDR
Pointer itself is unaffected. Any word I/O
instruction can be used.

7.6.2 Block Move Port

Block moves of data into and out of Page Descrip­
tor registers are accomplished by word accesses to
I/O port address FFxxF4|_j. The Page Descriptor
register accessed is the one addressed by the PDR
Pointer. Any word 1 /0 instruction can be used.
After the access, the contents of the PDR Pointer
are automatically incremented by one; thus, a sin­
gle block I/O instruction can be used to access
several successive Page Descriptor registers. For
example, if the PDR Pointer is initialized to 00,
the execution of an INIRW instruction to I/O port
FFxxF4|_| causes data from successive Page
Descriptor registers starting with user Page
Descriptor register 0 to be loaded into memory.

For accesses to the Page Descriptor registers
using the Descriptor Select port or the Block Move
port, the permissible contents of the PDR Pointer
are the addresses for the Page Descriptors given
in Table 7-1: 00^ to 1Fp. Execution of an 1/0
instruction to ports FFxxF4^| or FFxxF5j^ when
the contents of the PDR Pointer are outside of
this permitted range will have unpredictable
results.

7.6.3 Invalidation Port

The Valid bits in the Page Descriptor registers
can be cleared to 0 via byte writes to 1 /0 port
address FFxxF2|^ thereby invalidating the con­
tents of the Page Descriptor registers. Individ­
ual Valid bits can subsequently be set by writing
to individual Page Descriptor registers using the
Descriptor Select port or the Block Move port,
fhe Page Descriptor registers invalidated by a
write tu port FFxxF2^ depend on the data written

to that port, as delineated in Table 7-2. When
writing to the invalidation port only the least
significant four bits are sampled; the upper
four bits are nut used. Reading port FFxxF2^|
returns unpredictable data.

Table 7-2. MMU Invalidation Port

Data Written to
Port FFxxF2

(Hexadecimal)
Page Descriptor Registers

invalidated

01 System Page Descriptor Registers 0 -7
02 System Page Descriptor Registers 8-15
03 System Page Descriptor Registers 0-15
04 User Page Descriptor Registers 0 -7
08 User Page Descriptor Registers 8-15
OC User Page Descriptor Registers 0-15

The 1/0 port addresses for the MMU registers are
listed in Table 7-3.

Table 7-3. I/O Port Addresses for MMU Control Registers

Port
Address Register

FFxxFOh Master Control Register

FFxxF1h Page Descriptor Register Pointer
FFxxF5h Descriptor Select Port
FFxxF4h Block Move Port
FFxxF2h invalidation Port

Changing an MMU control register or Page
Descriptor register does not cause a flush of the
CPU instruction pipeline. While an instruction
that changes an MMU register is executing, up to
two subsequent instructions can be pre-fetched
into the CPU pipeline; execution of these
subsequent instructions must have benign results.
In other words, when changing an MMU register, up
to two subsequent instructions can be fetched
before the change to the MMU register is
guaranteed to take effect. (However, no data
accesses are pre-fetched.) Iherefore, when
initially enabling the MMU for address
translation, the instruction that enables the MMU
and the next two instructions must be in a page
whose logical addresses are identical to physical
addresses (so that It is immaterial exactly when
the MMU begins the translation process for those
instruction fetches). When altering a page
descriptor register while translation is enabled,
neither of the next two instructions should reside
in the page associated with the Page Descriptor
register being changed.

7-6

s •aax’mm

7.7 1N5TRUCIION ABORfS

Detection of a page fault (due to an attempted
access to an invalidated page) or a write-protect
violation (due to an attempted write to a write-
protected page) causes the currently executing
instruction to be immediately aborted and
generates an Access Violation trap. The starting
address of the instruction that caused the
violation arid the current MSR value are
automatically saved on the system stack when
processing an Access Violation trap. Furthermore,
the MMU latches the address of the referenced Page
Descriptor register in the PFI field of the MMU
Master Control register whenever a violation
occurs.

For most instructions, the CPU registers are not
modified during the execution of aborted instruc­
tions; i.e., their contents are the same as before
the aborted instruction began. The exceptions are
the block move, block search, and block I/O
instructions; when aborted, the CPU registers are
the same as just before the iteration of the
instruction in which the violation occurred. In
either case, no modification of CPU registers is
necessary before restarting the aborted instruc­
tion.

The instruction abort; mechanism of the Z2B0 MPIJ
facilitates the implementation of virtual memory
in Z280-based systems. In a virtual memory sys­
tem, a cleared Valid bit in the Page Descriptor
register can be used to indicate when a memory
page is not currently mapped into main memory. If
an access is attempted to such a page, the
instruction is aborted and the Access Violation
trap service routine is invoked. The service rou­
tine can determine which Page Descriptor register
is involved by reading the PFI field of the MMU
Master Control register, swap the appropriate page
from the secondary storage device into main mem­
ory, adjust the appropriate Page Descriptor regis­
ters, and then restart the aborted instruction.
The aborted instruction is automatically restarted
by using the Return from Interrupt Long instruc­
tion to retrieve the original PC and MSR values
from the system stack. No adjustments to other
CPU registers are required. During the swapping
process, the modified status bit in the page
descriptor register can be used to determine if a
page has been modified since the last time it was
copied to a secondary storage device.

7-7

■afignrasaaanKi

Chapter 8
ry

8.1 INTRODUCTION

The Z280 MPU has 256 bytes of on-chip memory.
This on-chip memory can operate in either of two
modes, as determined by the contents of the Cache
Control register (see Chapter 3). In one mode,
the on-chip memory is dedicated to fixed physical
memory locations; the memory addresses that are
mapped into the on-chip memory are determined
under program control. In the other mode, the
on-chip memory acts as a cache for either instruc­
tions, data, or both. When acting as a cache, the
set of memory locations mapped into the on-chip
memory at a given time is determined by the action
of the executing program; the memory locations
that were most recently accessed are stored in the
cache. Memory accesses to locations mapped into
the on-chip memory do not generate external bus
transactions and, therefore, are faster than
accesses to external memory; thus, use of the
on-chip memory leads to faster, more efficient
program execution. On reset, the on-chip memory
is automatically enabled for use as a cache for
instructions only.

8.2 CACHE MMORY MODE

If the M/C bit in the Cache Control register is
cleared to 0, then the 256 bytes of on-chip memory
are treated as a cache. Cache memories are small,
high-speed memory buffers situated between the
processor and main memory. (Main memory is the

semiconductor memory accessed via bus transac­
tions.) for each memory access, control logic in
the MPU checks if the memory location involved is
currently stored in the cache. If so, the access
is made to the cache, usually without generating
an external bus transaction; if not, the access is
made to main memory and the contents of the cache
may be updated.

Z280 MPU cache organization is illustrated in
Figure 8-1 . The cache is arranged as 16 lines of
16 bytes each. Each line of the cache can hold a
copy of sixteen consecutive bytes of memory in
physical memory locations whose 20 most signifi­
cant address bits are identical. Thus, for exam­
ple, one line of the cache could hold the data
from physical memory locations 153820^ to
13382K|_|. The 20 bits of physical address asso­
ciated with one line of 16 bytes in the cache is
called the tag address for that line. Each line
of the cache also has 16 valid bits associated
with it; each byte in the line is associated with
one valid bit. The valid bit is used to indicate
if the corresponding byte in the cache holds a
valid copy of the memory contents at the asso­
ciated physical memory location.

Lines in the cache are allocated using a Least-
Recently Used (LRU) algorithm. If a read access
is made to a physical memory address not currently
stored in the cache (a cache "miss"), and the MMU
does not assert cache inhibit, the line in the

20 BITS 16 BITS

LINE 0

LINE 1

LINE 2

16 x 8 BITS

TAG 0 VALID
BITS CACHE DATA

TAG 1 VALID
BITS CACHE DATA

TAG 2 VALID
BITS CACHE DATA

• • »

• 9 *

• 9 •

TAG 15 VALID
BITS
w-rrorri-iwfl*

CACHE DATALINE 15

Tag n = the 20 Address bits associated with line n
Valid bits = 16 bits that indicate which bytes in the cache contain valid data
Cache data = 16 bytes

Figure 8-1. Cache Organization

8-1

cache that has been least recently accessed is
selected to hold the newly read data. All bytes
in the selected line are marked invalid except for
the bytes containing the newly accessed data. A
cache miss on a data write does not cause a line
to be allocated to the memory location accessed.

On a cache miss durinq a memory read, one or two
bytes (depending on the bus size) are fetched from
main memory and written to the cache. The cache
does not prefetch beyond the currently requested
byte or word, with one exception; if burst mode
operations are specified in the Cache Control reg­
ister, burst mode transactions are used when
fetching instructions.

The cache can be configured to hold only instruc­
tions, only data, or both instructions and data,
as determined by the contents of the Cache Control
register. If the cache contains data, writes to
data at locations in the cache also generate
external bus transactions to update the appro­
priate memory locations; thus, external memory is
always guaranteed to contain valid information.

Tables 9-1 and 8-2 summarize cache operation.
Whether or riot a given memory operation accesses
the cache depends on a number of factors: the
hype of access being made (program read, data
read, or data write), whether the cache is enabled
for that type of access, the type of instruction
being executed, whether the MMU asserts cache
inhibit, and whether the CPU or a DMA device ini­
tiates the transaction. The Cache Control regis­
ter determines if the cache is used for instruc­
tion fetches or data accesses or both. Execution
of the Test and Set (TSET) instruction, Return
from Interrupt (RETI) instruction, and the
extended instructions force external bus transac­
tions, regardless of the contents of the cache, as
described below. If the MMU is enabled, the
access can be cacheable or noncacheable, as deter­
mined by the contents of the page descriptor reg­
ister in use. If the MMU is not enabled, ail
transactions are considered to be cacheable. Both
the CPU and on-chip DMA channels can access the
cache. For DMA operations, only data read and
data write transactions can occur. The state of
the Cache Data Disable control bit in the Cache

Table 8-1. CPU Accesses to On-Chip Memory as Cache

Cache/Memory

Operation Hit/Miss
Cache

Instruction Cache Data
Cache Activity

Contents LRU
Bus

Transaction
Supplies

Information

MMU Cache Inhibit — Cacheable Transaction

Instruction Read Hit Disabled Don’t care Updated No change Yes Memory
Enabled Don’t care No change Updated None Cache

Miss Disabled Don’t care Updated* No change Yes Memory
Enabled Don’t care Updated Updated Yes Memory

Data Read Hit Don't care Disabled Updated No change Yes Memory
(non Test & Set)

* i

Don’t care Enabled
i - :' No change . .. Updated None - Cache *,r

Miss Don’t care Disabled Updated* No change Yes Memory
Don’t care Enabled Updated Updated Yes Memory

Data Read Don’t care Don’t care Don’t care Updated* No change Yes Memory
(Test & Set)

Data Write Hit Don't care Disabled Updated No change Yes —

Don’t care Enabled Updated Updated Yes ' —

Miss Don’t care Disabled No change No change Yes —

Don’t care Enabled No change No change Yes —

EPU-to-Memory Don’t care Don’t care Don’t care Updated* No change Yes EPU

Memory-to-EPU Don’t care Don’t care Don’t care No change No change Yes Memory

EPU Template Don’t care Don’t care Don’t care No change No change Yes Memory

RETI Opcode Don’t care Don't care Don’t care No change No change Yes Memory

MMU Cache Inhibit -*• Noncacheable Transaction

Don’t care Don’t care Don’t care Don’t care Updated* No change Yes Memory

^Updated if a cache line contains the accessed location, otherwise unaffected.

8-2

t

Control register is ignored during DMA
transactions; therefore, an on-chip DMA device
always updates the cache contents during DMA write
operations to memory locations that are currently
mapped into the cache.

For read operations, a cache "hit" is a reference
to a location with a valid entry in the cache, and
a cache "miss" is a reference to a location that
has no valid entry in the cache. In the general
case (and assuming the transaction is cacheable),
read operations that are cache hits cause the data
to be read from the cache without generating an
external bus transaction. Read operations that
are cache misses cause the data to be read from
the external memory via an external bus cycle and
update the cache contents. Updatinq the cache
contents may involve replacing the least-recently
used line of the cache with a new line that
contains the read location. For write operations,
a cache hit is a write to a location in the cache,
even if the destination byte is marked as invalid
in the cache, and a cache miss is a write to a
location that is not in the cache. Write
operations that are cache hits cause both the
cache and external memory to be updated, and write
operations that are cache misses have no effect on
the cache. Memory write operations always gener­
ate external bus transactions.

Exceptions to the above rules include the Test and
Set, Return from Interrupt, and extended instruc­
tions. Data read operations during execution of a
Test and Set instruction always read the data from
the main memory with an external bus transaction,
reqardless of whether or not the location read is
valid in the cache. This ensures that the most
recent value for a semaphore is read from external
memory in the case that the semaphore is in shared
memory in a multiprocessor system; another proces­
sor may have chanqed the semaphore after it was
last read into the MPU's cache.

If an RE1 1 opcode is fetched from the cache, the
instruction fetch cycles are repeated with
external bus transactions; this ensures that Z80
family peripherals connected to the Z280 MPU with
an interrupt request daisy chain can detect the
RET I opcode fetch (a requirement for the proper
operation of the Z80 family peripherals).

If extended instructions are resident in the
cache, the EPU template portion of those
instructions is always read usinq external bus
transactions. This ensures that an Extended
Processinq Unit (EPU) that is monitoring the
external bus can detect and read the template
durinq those instruction fetch cycles. If the
extended instruction results in a transfer of data
between the EPU and memory, all the involved data
transactions occur on the external bus. Cache
hits during EPU-to-memory write transactions
result in the updating of cache contents as well
as external memory.

* • •

For memory reads, the LRU algorithm loqic is
updated to reflect that the associated cache line
is the most-recently accessed line if the read was
an instruction fetch in a cache enabled for
instructions or a data fetch in a cache enabled
for data. For data writes, the LRU algorithm
loqic is updated only for a cache hit in a cache
that is enabled for data.

When the on-chip DMA controllers transfer data to
memory, cache contents are modified if the write
is to a location mapped into the cache, but the
LRU algorithm is unaffected. EPU-to-memory
transactions have the same effect. The cache is
not affected by the activity of external DMA
controllers.

On reset, all the valid bits in the cache are
cleared to 0, markinq all cache entries as
invalid, and the on-chip memory is configured as a
cache for instructions only.

Table 8-2. On-Chip DMA Accesses (Both Flowthrough and Flyby)
Effect on On-Chip Memory as Cache

Memory
Operation Hit/M iss

Cache
Instruction Cache Data

Cache Activity
Contents LRU

Bus
Transaction

Cache/Memory
Supplies

Information

Read Hit Don’t care Don’t care Updated No change Yes Memory
Miss Don’t care Don’t care Updated* No change Yes Memory

Write Hit Don’t care Don’t care Updated No change Yes —

Miss Don’t care Don’t care No change No change Yes —

* Updated if a cache line contains the accessed location, otherwise unaffected.

8-3

8.3 FIXED-ADDRESS MODE

When the M/C bit in the Cache Control register Is
set to 1 , the on-chip memory is treated as fixed
physical memury locations. Accesses to these mem­
ory locations never generate external bus transac­
tions and, therefore, are faster than memory
accesses that use the external bus (Table 3-3).

In this mode, the on-chip memory is still organ­
ized as 16 lines of 16 bytes each, with a 20-bit
taq address that specifies the 16 physical memory
locations in each line. All locations are assumed
to contain valid information, whether or not they
have been initialized; the individual valid bits
associated with each byte in the line are ignored
in this mode. The Cache Data Disable and Cache
Instruction Disable bits in the Cache Control reg­
ister are also iqnored in this mode, and no dis­
tinction is made as to whether the CPU is acces­
sing instructions or data.

Before enterinq this mode, the user must initial­
ize the taq addresses for all 16 lines of on-chip
memory. The values for these tags determine the
256 physical memory addresses that are mapped into

the on-chip memory. This is accomplished by ena­
bling the on-chip memory as a cache for data only,
readinq data from 16 physical memory locations
that are in different cache lines, and then set­
ting the M/C bit in the Cache Control register to
1 to enable the fixed-address mode for the on-chip
memury. Alterinq the M/C bit in the Cache
Control register does not affect the contents of
the on-chip memury, includinq the taq addresses.

Note that each line of the on-chip memory must be
assigned a unique taq address before entering this
mode so that no unpredictable addresses are mapped
into the on-chip memory. I f instructions are to
be fetched from the on-chip memory while in this
mode. Return from Interrupt (RE II) instructions
and the templates within extended instructions
should never be resident in the on-chip memory; in
each case, the operation of devices external to
the MPU depends on these instructions being
fetched with external bus transactions, as men­
tioned in section 8.2. Data to be transferred to
or from an EPU cannot be resident in on-chip mem­
ory either, since this data must be transferred to
the EPU over the external bus.

Table 8-3. DMA/CPU Accesses to On-Chip Memory as Fixed Memory Location

Cache/M em ory
Mem ory

Operation H it/M iss
Cache

instruction Cache Data
Cache Activity

Contents LRU
Bus

Transaction
Supplies

information

Read Hit Don’t care Don’t care No change No change No Cache
Miss Don’t care Don’t care No change No change Yes Memory

Write Hit Don’t care Don’t care Updated No change No —

Miss Don’t care Don’t care No change No change Yes —

8-4

Chapter 9.
On-Chip Peripherals

9.1 INTRODUCTION

The Z280 MPU features a number of peripheral
devices on-chip in addition to the CPU, MMU, and
cache memory. These peripheral devices include a
clock oscillator, dynamic RAM refresh controller,
four direct memory access (DMA) controllers, three
counter/timers, and a universal asynchronous
receiver/transmitter (UART).

The DMA channels, counter/timers, and UART are
user-proqrammable devices that can be configured
to operate in several different modes. These
devices are accessed usinq 1/0 instructions;
however, no external 1 /0 bus transactions are
qenerated when the on-chip peripherals are
accessed by the CPU. These devices can generate
interrupt requests to the Z280 MPU, as described
below and in Chapter 6. Interrupts from these
on-chip peripherals are always processed using
interrupt mode 3, reqardless of which interrupt
mode is used for externally qenerated interrupts.

9.2 CLOCK OSCILLATOR

The Z280 MPU has an on-chip clock oscillator/
qenerator that can be connected directly to a
crystal or any other suitable clock source. The
frequency of the processor clock is one-half of
the frequency of the external clock source or
crystal. The processor clock can be further
divided by a factor of 1, 2, or 4 to provide the
bus timing clock, as specified by the contents of
the Bus Timing and Initialization register (see
Chapter 3). The bus timinq clock is output by the
MPU for use by the rest of the system.

The on-chip clock oscillator, a high-gain amplifier, fs
enabled by either connecting a crystal across the
Clock/Crystal Input (XTAL1) and Crystal Output (XTALO)
pins or connecting a clock input to the Clock/Crystal
Input pin. The crystal must be a parallel resonant
fundamental type.

9.3 REFRESH CONTROLLER

An on-chip memory refresh controller in the Z280
MPU is available for generating memory refresh
operations in systems utilizing dynamic RAMs.
Operation of this mechanism is controlled by the
Refresh Rate register, which is located in the
Z280 MPU's I/O address space. If enabled, memory
refreshes are performed at a rate specified by the
contents of this register.

The format of the 8-bit Refresh Rate register is
shown in Figure 9-1. This register enables the

f.

refresh mechanism and determines the frequency of
refresh transactions. The fields in this register
are described below.

r o
r — ■ i i i * ■
I e 0

i
RATE

— L .1.,,. i ...

Figure 9-1. Refresh Rate Register

Refresh Enable (E) bit. When this bit is set to
1, the refresh mechanism is enabled. When this
bit is cleared to 0, the refresh mechanism is
disabled and refresh transactions are not
generated.

Refresh Rate field. The contents of this 6-bit
field determine the frequency of refresh
transactions if the Refresh Enable bit is set to
1. A value of n (0 < n < 63) in this field
specifies a refresh rate of once every 4n
processor clock cycles; a value of 0 in this field
indicates a refresh rate of every 236 processor
clock cycles.

The Refresh Rate register is accessed via byte I/O
operations to I/O port address FFxxE8 |̂ (where x
means "don't care”). Bit 6 of this register is
not used. On reset, the Refresh Rate register is
initialized to 88 ,̂ thereby enabling memory
refresh at a rate of 32 processor clock cycles per
refresh. This register can be read at any time to

i

determine if refresh is enabled and the current
refresh rate.

A 10-bit refresh address is output on address
lines A0-A9 during a refresh transaction. This
refresh address is incremented by one for Z80 bus
(8-bit data bus) configuration and by two for
Z-BUS (16-bit data bus) configuration of the Z280
MPU between refresh transactions. The refresh
address is not accessible by the programmer and is
not affected by a reset.

During instruction execution, the actual refresh
transactions are generated as soon as possible
after the refresh period has elapsed. Generally,
the refresh transaction is executed after the last
clock cycle of the bus transaction in progress at
the time that the refresh period elapsed. If the
CPU receives an interrupt request during that same
bus transaction, the refresh transaction is
inserted before processing the interrupt. When
the Z280 MPU does not have control of the bus due
to a bus request, refresh transactions cannot be
executed; while the MPU is in this state, internal
circuitry records the number of refresh periods
that have elapsed (that is, the number of "missed”
refresh transactions). When the Z280 MPU regains
control of the bus, the refresh mechanism
automatically issues the missed refresh cycles.
Similarly, if the refresh period elapses while the
MPU is in a wait state (due to WAIT being
asserted) during a bus transaction, the number of
missed refresh transactions is recorded
internally, and those refresh cycles are issued
after WAIT is deactivated and the bus transaction
is completed. The internal circuitry can record
up to 256 such missed refresh operations.

Pseudo-static memories and some peripheral devices
(such as the Z8000 family of peripherals) require
a minimum transaction rate on the bus for correct
operation. If the refresh mechanism is disabled
by clearing the Refresh Enable bit in the Refresh
Rate register, the rate field in this register is
used to determine the minimum transaction rate on
the bus. In this mode, if the refresh timer
reaches 0 and no external bus transaction has
occurred since the last time the refresh timer
elapsed, then a refresh transaction will be
generated. Thus, in a system that does not
require memory refresh transactions, the Refresh
Rate field in the Refresh Rate register must be
initialized to an appropriate value even if memory
refresh operations are disabled.

9e4 COUNTER/IIMERS

The Z280 MPU's three on-chip 16-bit counter/timers
can be configured to satisfy a broad range of

counting and timing applications, including event
counting, interval timing, watchdog timing, and
clock generation. Each counter/timer is composed
of a 16-bit downcounter, a 16-bit time constant
register, and two 8-bit control and status
registers (the Counter/Timer Configuration
register and the Counter/Timer Command/Status
register). The three independent devices are
referred to as counter/timer 0 (C/T 0), counter/
timer 1 (C/T 1), and counter/timer 2 (C/T 2).
Figure 9-2 is a block diagram of a Z280 MPU
counter/timer.

INTERRUPT CPU
TO CPU CLOCK

Figure 9-2. Coimter/Timer Block Diagram

C/T 0 and C/T I can be programmably linked to form
a 32-bit counter/timer.

Two external connections are available for each
counter/timer: a Counter/Timer I/O pin (C/T I/O)
that can act as a gate or trigger input or a
counter/timer output, and a Counter/Timer Input
pin (C/T IN) that can serve as a count, gate,
trigger, or gate/trigger input. The contents of
the Counter/Timer Configuration register determine
the pin functions for a given application.

The counter/timers can operate in counter mode or
in timer mode. In counter mode, the downcounter
decrements the count on the occurrence of an
external event; specifically, the counter is
clocked by a rising edge on the Counter/Timer
input pin. In timer mode, the downcounter is
clocked by an internal signal— the CPU clock
divided by four.

9-2

Gate and trigger inputs to the downcounter can be
used to control counter/timer activity. Both
hardware and software gate and trigger signals are
available. Either retriggerable or nonretrigger-
able modes can be specified.

The counter/timer's "terminal count'* condition Is
when the duwncounter holds a count of 0. This
terminal count condition can be used to generate
an interrupt request to the CPU. Counter/timers
can generate a counter/timer output signal when
the terminal count is reached. Upon reaching
terminal count, a counter/timer can be programmed
either to discontinue counting (single-cycle mode)
or to reload the initial time constant value and
continue counting (continuous mode).

9.4.1 Counter/Tinter Operating Modes

The counter/timers have two basic operating modes,
distinquished by the clocking siqnal to the
duwncounter: counter mode and timer mode. The
current mode for counter/timer operation is
determined by the contents of the Counter/Timer
Configuration register.

In counter mode operation, the counter/timer
monitors an external input line and records
low-to-hiqh transitions on that line. The
Counter/Timer Input pin is used as the counter's
input signal; if the appropriate enabling
conditions are met, a low-to-hiqh transition on
that pin will cause the contents of the down-
counter to be decremented by one. The decrement
operation in the duwncounter is actually performed
on the first risinq edqe of the scaled processor
clock (CPU clock divided by 4) after the
low-to-hiqh transition on the C/T IN siqnal.
Typically, counter mode is used in event-countinq
types of applications.

In timer mode operation, the counter/timer
monitors the internal CPU clock scaled by four for
low-to-hiqh transitions. If the appropriate
enabling conditions are met, such a transition
causes the contents of the downcounter to be
decremented by one. No external inputs are
required in the timer mode of operation. Timer
mode is used in applications such as delay
interval timinq, watchdoq timing, and clock
generation.

In either mode, the maximum count frequency is the CPU
clock divided by four.

9.4.2 Gates and Triqqers

Gate and trigger inputs are used to control
counter/timer activity in either counter mode or
timer node.

Gate signals are used in applications whe re
countinq or timinq is to occur only during certain
specified intervals; the counter/timer will count
or time only while the qatinq condition is met.
for applications where an external pin is
configured as a qate input, counting or timing
operations are performed only while the gate input
is high. A software qate bit (one bit of the
Counter/Timer Command/Status reqister) is used as
a filter for the qate input; while the software
qate bit is cleared to 0, the qatinq condition is
not met regardless of the state of the qating
line. In other words, the qatinq condition is a
logical AND of the hardware and software gates;
both the qate input must be hiqh and the software
qate bit must be set to 1 fur the counter/ timer
to be operatinq. If no external pins are
configured as a qatinq siqnal, then the software
qate bit must be set to 1 to satisfy the qating
condition.

Figure 9-3 illustrates the gating facility in an
application where the counter/timer is in counter
mode with both the qate and the count siqnals
cominq from external pins. This example assumes
that the software qate bit has been set to 1. The
contents of the downcounter are decremented on a
low-to-hiqh transition of the count input only if
the qate input is hiqh.

. , • *. • * .*

If trigger mode is selected, a countdown sequence
for a counter/timer beqins only after a triqqerinq
condition occurs; a countinq or timing operation
can begin only after a low-to-hiqh transition is
detected on the triqqer. If an external input is
used as a trigger, that line is monitored by the
counter/timer. Alternatively, a software triqqer
bit (one bit in the Counter/Timer Command/Status
reqister) can be set to 1 from a previously
cleared value to activate the counter/timer. The

QATE
INPUT i

Figure 9-3. Counter Operation with Gate Only

9-3

trigger condition is a logical DR of the hardware
and software triggers; that is, either a hardware
or software trigger will activate an enabled
counter/ 1 imer•

operation in an application where counter mode is
selected, one input is a count input, and the
other input is used as both the trigger and gate.

figure 9-4 illustrates trigger operation in an
application where the counter/timer is in the
counter mode with both the triqger and count
inputs provided by external pins. This example
assumes that the software trigger bit does not
make a low to high transition. The contents of
the downcounter are decremented on a low-to-high
transition of the count input only after a
low-to-hiqh transition on the triqqer input has
been detected.

Either a retriggerable or nonretrigqerable
operation can he specified. In the retriqgerahle
mode, the occurrence of a trigger condition causes
the counter/timer to reload its initial time
constant value reqardless of the current contents
of the downcounter. This mode is used in
applications such as watchdoq timers. In the
nonretrigqerable mode, after the first trigger
condition starts counter/timer activity,
subsequent trigger conditions are iqnored.
Nonretrigqerable mode is used in applications such
as delay counters that measure a fixed delay from
a qiven event.

Gate and trigger operations can be combined in a
sinqle counter/timer. Separate gate and triqger
inputs (either hardware or software) can be
specified, or one external input can be used as
both a qate and a trigger. In the latter case, a
low-to-high transition on the input acts as a
triqger that starts counter/timer activity, and
then countinq or timinq continues only as lonq as

/

the input siqnal remains high. Again, either
retriggerable ur nonretrigqerable modes are
available. figure 9-5 illustrates counter/timer

TRACKER
INPUT

9.4.3 Terminal Count Condition

Durlnq operation, the counter/timer counts down
from a preset time constant value. The time
constant value can range from 0 to 65535. The
terminal count condition is reached with the
transition from a count of 1 in the downcounter to
a count of 0. The counter/timers can be
programmed to interrupt the CPU and/or generate a
counter/timer output siqnal when the terminal
count is reached.

Another set of operating modes determines
counter/timer activity upon reachinq the terminal

£
count. Whether in counter or timer mode, a
counter/timer can be configured for single-cycle
mode or continuous mode. In sinqle-cycle mode,
the counter/timer halts operation upon reachinq
terminal count; a new triqqer is required to
reload the time constant and initiate another
countdown sequence. In continuous mode, the
counter/timer is automatically reloaded with the
time constant upon reaching terminal count; the
downcounter is reloaded on the next count input
after reaching terminal count. for example, a
counter/timer in continuous mode with a 3 in its
Time Constant reqister will be reloaded on every
fourth count input.

An interrupt enable bit in the Counter/limer
Configuration register determines if an interrupt
request is generated at the terminal count. This
request will be processed by the CPU if the appro­
priate Interrupt Request Enable bit in the CPU’s
Master Status register is set to 1 (see Chapter
6).

Figure 9-4. Counter Operation with Trigger Only

GATE GATE

Figure 9-5. Counter Operation with Gate and Trigger

9-4

f

The CTIO pin can be configured as a counter/timer
output siqnal. Reaching the terminal count
condition causes a low-to-high transition on the
C110 pin; this siqnal remains high as long as the
downcounter holds a value of zero (that is, until
a non-zero time constant is loaded into the
downcounter due to a trigger condition).

«

9.4.4 Counter/Timer Registers

Each counter/timer has two 8-bit command and
status registers and two 16-bit count registers.
The 8-bit Counter/Timer Configuration and
Counter/Timer Command/Status registers determine
the counter/timer*s operating modes and provide
status information about the current operation.

if C/T 0 and C/T I are linked to form a 32-bit
counter/timer, the functionality of these
registers is affected, as described in section
9.4.5. The 16-bit Time Constant register holds
the initialization value for the counter/timer,
and the 16-bit Count-Time register contains the
value of the current count in progress.

9.4.4.1 Counter/Timer Configuration Register

Continuous/Single Cycle (C/S). While this bit is
set to 1 , the downcounter is automatically
reloaded with the contents of the Time Constant
register on the next count input signal after
terminal count is reached, and the counting or
timing operation continues. While this bit is
cleared to 0, no automatic reloading occurs when
terminal count is reached.

Retrigger Enable (RE). While this bit is set to
1, the value of the Time Constant register is
loaded into the downcounter whenever a trigger
input is received (retriggerable mode). While
this bit is 0, trigger conditions do not cause
reloading of the downcounter.

Interrupt Enable (IE). While this bit is set to
1 , the counter/timer generates an interrupt
request to the Z280 CPU upon reaching terminal
count. While this bit is cleared to 0, no
interrupt requests can be generated by the
counter/timer.

Counter/Tiraer Cascade (CTC). For C/T 0, this is
the enable bit for linking to C/T I in order to
form a 32-bit counter/timer (see section 9.4.5).
The state of this bit has no effect in C/T I and
C/T 2.

The Counter/fimer Configuration register, shown in
Figure 9-6, specifies the counter/timer*s mode of
operation. The five fields in this register are
described below.

sInput Pin Assignments (1PA). The contents of thi
4-bit field determine the operating mode of the
counter/timer (counter or timer mode) and the
functionality of the external pins associated with
that counter/timer. The four hits in this field

7 0 are associated with enabling the generation of an
output pulse (EO), selecting the counter or timer
mode (C/T), enablinq the gatinq facility (G), and
enablinq the triqqerinq facility (0 . Table 9-1

l Register shows the encodinq of this field.

the IPA Field in the Counter/Timer Configuration Register

r * RE IE IcTC* IPA j

• CTC Is present on countor/tlmor 0 only.

Figure 9-6. Counter/Timer Configuratior

Table 9-1. Encoding of

IPA Field Pin Functionality
EO C f T G T Counter/Timer I/O Counter/Timer Input Mode

0 0 0 0 Unused Unused Timer
0 0 0 1 Unused Trigger Timer
0 0 1 0 Gate Unused Timer
0 0 1 1 Gate Trigger Timer
0 1 0 0 Unused Input Counter
0 1 0 1 Trigger Input Counter
0 1 1 0 Gate Input Counter
0 1 1 1 Gate/Trigger Input Counter
1 0 0 0 Output Unused Timer
1 0 0 1 / Output Trigger Timer
1 0 1 0 Output Gate Timer
1 0 1 1 Output Gate/Trigger Timer
1 1 0 0 Output Input Counter
1 1 0 1 Unused Unused Reserved
1 1 1 0 Unused Unused Reserved
1 1 1 1 Unused Unused Reserved

9-5

If a reserved encodinq of the IPA field is
specified fur any counter/timer, counter/timer
operation is unpredictable.

The Counter/Timer Configuration registers are
cleared to all zeros by a reset.

9.4.4.2 Counter/Timer Command/Status Register

The Counter/Timer Command/Status register provides
for software control of counter/timer operation
and reflects the current status of the counter/
timer. Three control bits and three status bits
are included in the Command/Status register. The
format for this register is illustrated in figure
9-7.

7 0
c o r |

Figure 9-7. Counter/Timer Command/Status Register

Enable (EN). While this bit is set to 1, the
counter/timer is enabled; operation beqins on the
first rising edge of the processor clock following
the settinq of this bit from a previously cleared
state. Writinq a 1 to this bit when its previous
value was a 1 has no effect. While this bit is
cleared to 0, the counter/timer is disabled and
performs no countinq or timinq operations. While
in the disabled state , the contents of the lime
Constant register are continuously loaded into the
downcounter.

Software Gate (GT). While the counter/timer is
enabled (the EN bit is a 1), downcounter operation
beqins on the risinq edqe of the first scaled
processor clock following the setting of this bit
from a previously cleared value. Writing
a 1 to this bit when the previous value was a 1
has no effect. While this bit is cleared to 0,
the countinq or timinq sequence is halted.

Software Trigqer (TR). While the counter/timer Is
enabled (the EN bit is a 1), the triqger condition
is qenerated on the risinq edqe of the first
scaled processor clock followinq the settinq of
this bit from a previously cleared value. If a
previous triqqer condition has not occurred, the
contents of the Time Constant register are loaded
into the downcounter and the countinq or timinq
sequence beqins. If a hardware or software
triqqer has already occurred and the Retrigger
Enable bit is set to 1, the counter/timer will be
retriqqered. If a trigqer has already occurred,
the Retriqqer Enable bit is cleared to 0, and a
countinq or timinq operation is in progress (that
is, the downcounter holds a count other than 0),
then settinq the TR bit has no effect on
counter/timer operation. Clearinq this bit to 0
also has no effect on counter/timer operation.

EN GT TG 1 1 CIP CC

progress. White this bit is a 1, the counter/timer
has a time constant loaded and the downcounter holds a
non-zero value. While this bit is a 0, the
counter/timer is not operating. The state of this bit
is determined by control logic in the counter/timer
and cannot be altered by a write operation to this
register.

End-of-Count Condition Has Been Reached (CC).
This status bit is set to 1 by control loqic in
the counter/timer when the end-of-count condition
is reached (that is, the downcounter has been
decremented to zero in the single-cycle mode or
the downcounter has been reloaded in the
continuous mode). While this bit is a 0, the
downcounter has not been decremented to 0 since
the last time that this bit was cleared by
software. This bit can be read or written under
proqram control.

V •• • •'

Count Overrun (COR). This status bit is set to 1
by control logic in the counter/timer if the
end-of-count condition is reached while the CC bit
is already set to 1 , thereby indicatinq a count
over-run condition. If this bit is a 0, the
end-of-count condition has not been reached while
the CC bit is a 1 since the last time the CC bit
was cleared by software. This bit can be read or
written under program control.

The Counter/Timer Command/Status register is
cleared to all zeros by a reset. Bits 3 and 4 of
this reqister are not used, and should always be
written with zeros (however, when bits 3 and 4 are
read back, they will be 1s regardless of whether
they were written with zeros or ones).

9.4.4.3 Time Constant and Count-Time Registers

The 16-bit Time Constant reqister holds the value
to be loaded into the downcounter when counter/
timer operation beqins. The downcounter is loaded
with the contents of the Time Constant reqister
when the counter/timer is initially triggered to
beqin counter/timer operation, each time the
end-of-count condition is reached if the
continuous mode is selected, and at the occurrence
of each triqqer condition if retriqqerable mode is
selected. By loading the Time Constant reqister,
the user can specify counts ranqinq from 1 to
65536. The contents of the Time Constant reqister
are continuously loaded into the downcounter while
the counter/timer is disabled (the EN bit is 0).

The 16-bit Count-Time reqister holds the current
value in the downcounter and can be read at any
time without affectinq counter/timer operation.
Writes to this reqister have no effect.

Count in Proqress (CIP). This status bit Both the Time Constant and Count-Time registers
indicates if a countinq or timinq operation is in hold unpredictable values after a reset.

9-6

I

fable 9-2 lists the 1/0 port addresses associated
with each of the counter/timers1 registers. The
Couriter/Timer Configuration reqister and Counter/
Timer Command/Status register are accessed with
byte I/O instructions and, with the exception of
the read-only CIP bit, can be read or written. The
Time Constant and Count-Time registers are
accessed with word 1/0 instructions. The Time
Constant reqister can be read or written; the
Count-Time register is read-only.

Table 9-2, I/O Addresses of Counter/T im er Registers

Register C / T 0
C ounter/T im er

C /T 1 C / T 2

Configuration FExxEO FExxE8 FExxF8

Com m and/Status FExxEI FExxE9 FExxF9

Time Constant FExxE2 FExxEA FExxFA

Count-Time FExxE3 FExxEB FExxFB

All addresses are in hexadecimal.
“ x ” means "d o n ’t care" •

9.4.5 Linking Counter/Tiwers

Under software control, two Z280 MPU counter/
timers can be linked to form a 32-bit counter/
timer. C/T 0 can be linked with C/T 1. This
linkinq function is controlled by the CTC bit in
the Counter/Timer Configuration reqister in C/T
0. While the CfC bit in C/T 0's Configuration
reqister is set to 1, C/T 0 and C/T 1 are linked
together.

Linkinq the two counter/timers toqether affects
the functionality of the counter/timers*
registers. If C/T 0 and C/T I are linked to form
a 32-bit counter, C/T 1*s Time Constant reqister
holds the upper 16 bits and C/T 0*s Time Constant
reqister holds the lower 16 bits of the 32-bit
count to be loaded into the downcounter when a
counter/timer operation beqins. Similarly, C/T
1*s Count-Time reqister holds the upper 16 bits
and C/T 0*s Count-Time register holds the lower 16
bits of the current count.

The effect of linking counter/timers on the Con­
figuration and Command/Status registers is
summarized in Table 9-3. The configuration of the
32-bit counter/timer is determined by the state of
the C/S, RE, and IPA fields in the Configuration
reqister of the more significant counter/timer
(C/T 1). Any external connections specified in the
IPA field of the C/T 1 Configuration register use
the pins associated with C/T 1. The controls in
the Confiquration register for C/T 0 are iqnored,
with the exception of the CTC, IE, and E0 bits.
The CTC bit in C/T 0 is used to specify linkinq of

the counter/timers. If the IE bit in the more
significant counter/timer (C/f 1) is set to 1, an
interrupt request is qenerated when the 32-bit
counter reaches end-of-count, usinq the interrupt
request signal from C/T I; if the IE bit in the
less significant counter/timer (C/f 0) is set to
1 , an interrupt request is qenerated when the
lower 16 bits of the 32-bit downcounter reach 0
(in other words, when C/T 0 reaches end-of-count),
using the interrupt request signal from C/T 0. If
the 0E bit in C/T 0 is set, the C/T 1/0 signal
associated with C/T 0 goes high whenever the lower
half of the 32-bit down-counter holds a 0 (in
other words, when C/T 0*s downcounter holds a 0).

Similarly, the Command/Status reqister in the more
significant counter/timer (C/T 1) contains the
control and status bits for the linked 32-bit
counter/timer. However, the status bits in the
less significant counter/timer (C/T 0) hold valid
status for the lower-half of the 32-bit
counter/timer (that is, the status of C/T 0
itself).

9.4.6 Counter/Tiaer Sequence of Events

Before starting a countinq or timinq sequence, the
counter/timer must be configured for the par­
ticular application by loadinq its Configuration
register. Next, the startinq value for the
downcounter is specified by loadinq the Time
Constant register; initial values ranqinq from 0
to 65535 can be specified for the downcounter.
Lastly, the enable (EN) bit in the Command/Status
reqister is set to 1 to enable counter/timer
operation.

While the EN bit is cleared to 0, the counter/
timer cannot be triggered, interrupt requests from
the counter/timer cannot be generated, and the
downcounter holds the value in the Time Constant
reqister. However, clearinq the EN bit does not
clear any pending interrupt requests— it only
prevents new interrupt requests from beinq
qenerated.

Once the EN bit is set to 1, the countdown
sequence begins when the counter/timer is
triqqered, causinq the contents of the Time
Constant reqister to be loaded into the down
counter. The downcounter is loaded on the risinq
edqe of the external triqqer input (if an external
triqqer was specified in the Configuration
register) or by writing a 1 into the TG bit of the
Command/Status reqister. The EN and TG bits can
both be set to 1 during the same write operation
to the Command/Status reqister to both enable and
triqqer a counter/timer (assuminq that the TG bit
was a zero previously, so that a low-to-high

9-7

Table 9-3. Configuration and Command/Status Registers for Linked Counter/Timers

Bit Active/lgnored Comments

C/T 1 Configuration Register

c/s Active Specifies continuous or single-cycle mode for 32-bit counter/timer.
RE Active Specifies retriggerable or nonretriggerable mode for 32-bit counter/timer.
IE Active Interrupt enable for 32-bit counter/timer.
CTC Ignored
EO ■ Active Enable output for 32-bit counter/timer; C/T 1 ’s output pin is used.
C/T Active Specifies counter or timer mode for 32-bit counter/timer.
G Active Enable gate input for 32-bit counter/timer; C/T 1 ’s input pin is used.
T Active Enable trigger input for 32-bit counter/timer; C/T 1 ’s input pin is used.

I

C/T 0 Configuration Register

C/S Ignored
RE Ignored
IE Active Interrupt enable for lower half of 32-bit counter/timer.
CTC Active

, -V *■ ' ' -
Set to 1 to link counter/timers. *• 4 • •• *

EO Active Enable output for lower half of 32-bit counter/timer (C/T 0 only).
C/T Ignored
G Ignored
T Ignored %

C/T 1 Command/Status Register

EN Active Enable control for 32-bit counter/timer.
GT Active Software gate for 32-bit counter/timer.
TG Active Software trigger for 32-bit counter/timer.
CIP Active Count-in-Progress status bit for 32-bit counter/timer.
CC Active End-of-Count Has Been Reached status bit for 32-bit counter/timer.
COR Active Count Overrun status bit for 32-bit counter/timer.

C/T 0 Command/Status Register

EN Ignored
GT Ignored
TG Ignored
CIP" - • - -A’ • • . Active Count-in-Progress status bit for lower half of 32-bit counter/timer.
CC Active End-of-Count Has Been Reached status bit for lower half of 32-bit

, counter/timer.
COR Active Count Overrun status bit for lower half of 32-bit counter/timer.

transition on the triqqer is detected). The
trigqer condition is a logical OR of the external
trigger input (if specified) and the 1G bit.

i
i

Once triggered, the rate at which the downcounter
counts is determined by the mode of the counter/
timer. In the timer mode, the downcounter is
clocked internally by a siqnal that is one-fourth
the frequency of the CPU clock (one-eighth the
frequency of the external clock source). In the
counter mode, the downcounter is clocked by a
rising edge on the count input signal (this edge
is internally synchronized with the scaled CPU
clock).

In counter mode, the first low-to-high transition
on the count input should occur a minimum of four
internal CPU clock cycles after the trigger
event. Count inputs occurring within four CPU
clock cycles of the trigger may or may not be
recognized by the downcounter.

Once the downcounter is loaded, the countdown
sequence continues towards the terminal count
condition as long as the counter/timer's gate
input is high. The gate input to the counter/
timer is the logical AND of the external gate
input (if an external gate was specified in the
Configuration register) and the GI bit in the

9-8 i

Command/Status register. If the gate input goes
low, the countdown halts, and then resumes when
the gate input goes high again. The gate function
does not affect the trigger function.

T tie reaction to triggers during the countdown
operation depends on the state of the RE bit in
the Configuration register. If RE is a 0,
retriggers are ignored and the countdown sequence
continues normally. If RE is a 1, each occurrence
of a trigger condition causes the downcounter to
be reloaded from the Time Constant register and
the countdown sequence starts over again.

The current state of the downcounter can be
determined by polling the status bits in the
Command/Status register and by reading the current
count from the Count-Time register. Reading these
registers does not affect the current countdown
sequence.

The state of the C/!T bit in the Configuration
register controls the operation of the counter/
timer upon reaching terminal count. If the C/S
bit is a 1 , specifying the continuous mode of
operation, the downcounter is reloaded from the
Time Constant register on the next count input
after reaching terminal count, and a new countdown
sequence begins. The Time Constant register can
be programmably altered during counter/timer
operation without affecting the current countdown
sequence. If the C/S~ bit is 0, specifying
single-cycle operation, the downcounter halts upon
reaching terminal count until the next occurrence
of a trigger condition reloads the downcounter.

If the IE bit in the Configuration register is a
1 , an interrupt request is generated upon reaching
the terminal count. If a counter/timer output
signal is specified in the IPA field of the
Configuration register, reaching terminal count
causes a low-to-high transition on the output
signal; this signal then remains high until the
downcounter is reloaded with a non-zero value due
to a trigger condition or disabling of the
counter/timer with a non-zero value in the Time
Constant register. Note that the counter/timer
output line can be forced high by disabling the
counter/timer with all zeros loaded into the Time
Constant register.

9.5 DMA CHANNELS

The Z2R0 MPU has four on-chip Direct Memory Access
(DMA) transfer controllers for high-bandwidth
data transmissions within a Z280-based system.
Each DMA channel is capable of controlling high
speed memory-to-memory, memory-to-peripheral,
peripheral-to-memory, or peripheral-to-peripheral
data transfers.

All four DMA channels, referred to as DMAO, DMA1,
DMA2, and DMA3, are capable of controlling
’'flowthrough” type data transfers, wherein data Is
temporarily stored in the DMA device between
reading from the source and writing to the
destination. Two of the channels, DMAO and DMA1,
also support "flyby" mode data transfers, wherein
the data is read from the source and written to
the destination during a single bus transaction.
Otherwise, the four DMA controllers are identical,
although they have different priorities with
respect to interrupt and bus requests.

Two external signals provide the interface between
the DMA channels and external memory or peripheral
devices. The READY (RDV) input Ls used by an
external device to request activity by a DMA
channel. The DMA SIROBE (DMASTB) output is used
to signal the 1/0 port when a fiyby transaction is
in progress; DMASIB is available only for DMAO
and DMA 1.

. * • . * • * *> / . •» • \ i ' * r» ̂ j M ' . •> u s , * * , ‘

Two 24-bit addresses are generated by the DMA for
each flowthrough transaction, and one 24-bit
address for each flyby transaction. These
addresses can be physical memory addresses or I/O
port addresses. The addresses are automatically
generated for each transaction, and can be fixed,
incrementing, or decrementing. Two readable
registers, the Source Address register and
Destination Address register, hold the current
address of the source and destination ports.

During a DMA-controlled transaction, the DMA
channel assumes control of the system's address
and data buses. The on-chip DMA channels behave
as if they were external bus requestors with
respect to acquiring, using, and relinquishing the
bus. The DMA channels are arranged in a priority
daisy chain with the external Bus Request input
signal being the "next lowest bus requestor" on
the chain. Data can be transferred as bytes or
words, using the same memory and I/O timing as the
CPU for bus transactions (as determined by the
contents of the Bus Timing and Initialization
register).

Two DMA devices can be programmably linked, where
one DMA channel is used to program the second DMA
channel. DMA3 can be linked to DMA1 and DMA2 can
be linked to DMAO in this manner. DMAO can also
be programmably linked to the on-chip UART's
receiver, and DMA1 can be linked to the on-chip
UART's transmitter.

The DMA Master Control register specifies the
general configuration of all four DMA channels,
including the linking of DMA channels to the
UART. Each DMA channel has its own Transaction
Descriptor register that determines the operating

9-9

modes fur that channel, Source Address and
DestinatLon Address registers that hold the
addresses for the DMA transfers, and a Count
register that controls the number of transfers to
be performed. All DMA registers are accessed via
I/O instructions.

9.5.1 Types of DMA Operations

The Z280 MPU's on-chip DMA channels are capable of
two basic types of operations: flowthrough mode
data transactions and flyby mode data
transactions.

All four on-chip DMA channels support flowthrough
mode data transactions. In flowthrough mode, each
DMA-controlled data transfer involves two bus
operations: a read cycle to obtain the data from• «
the source and a write cycle to transfer the data
to the destination. The data is temporarily
stored in the DMA device between the read and
write operations. Flowthrough mode transactions
use the same address, data, and control signals as
CPU-initiated transactions and, therefore, require
no additional external logic in a Z280-based
system. Memory-to-memory, memory-to-peripheral,
peripheral-to-memory, or peripheral-to-peripheral
transfers are possible using flowthrough mode.

Flyby mode data transactions are supported only by
DMAO and DMA1. In a flyby mode transaction, the
data is read from the source and written to the
destination in a single bus operation. There are
two types of flyby transactions: memory-to-
peripheral and peripheral-to-memory. For a
memory-to-peripheral transaction, the DMA channel

,. ,generates a memory read bus cycle and notifies the r
I/O device that a flyby transaction is in progress
by activating the DMASTB output. The data must be
written to the I/O device during the memory read
operation. For a peripheral-to-memory flyby
transaction, the DMA channel generates a memory
write bus cycle while activating the DMASTB
output; the data must be read from the I/O device
during the memory write transaction. In other
words, during flyby mode transactions, the DMA
channel generates the bus signals needed to
control the memory access, and DMASTB is used to
notify the peripheral device when to read data
from the bus (for memory-to-peripheral transfers)
or when to put data onto the bus (for
peripheral-to-memory transfers.) Thus, flyby mode
transactions require additional external logic to
activate the appropriate peripheral device when
DMASTB is active. However, flyby mode
transactions are faster than flowthrough mode
transactions, since only one bus cycle is needed
to complete a data transfer.

When transferring data under DMA control (with
either flowthrough or flyby transact ions), one of
three transfer modes can be selected: single
transaction, burst, or continuous mode. Once DMA
activity has been initiated, the transfer mode
determines how many DMA-controlled data transfers
are to occur before the DMA channel relinquishes
the bus to the CPU or another DMA channel.

In the single transaction mode, the DMA controller
transfers only one byte or word of data at a
time. Control of the system bus is returned to
the CPU between each DMA transfer; the DMA must
make a new request for the bus before performing
the next data transfer.

In the burst mode, once the DMA channel gains
control of the bus, it continues to transfer data
until the RDY input goes inactive. When the RDY
line becomes inactive, the DMA releases the system
bus; bus control then returns back to the CPU or
to the next lower-priority DMA channel with a bus
request pending.

*

In the continuous mode, the DMA channel retains
control of the system bus until the entire block
of data has been transferred. If the RDY line
goes inactive before the entire data block is
transferred, the DMA simply waits until RDY
becomes active again, without releasing the bus.
This mode is the fastest mode since it has the
least response-time overhead when the RDY line
momentarily goes inactive and returns active
again. However, this mode does not allow any CPU
activity for the duration of the transfer. Tigure
9-8 summarizes the DMA transfer modes.

In any transfer mode, once a DMA-controlled data
transfer begins, that transaction is completed in
an orderly fashion, regardless of the state of the
RDY input.

DMAO and DMA1 include a software RDY signal in the
DMA Master Control register. The RDY input to
these DMA channels is the logical OR of the RDY
pin and the software-controlled RDY signal.

A DMA channel can be programmed to perform data
transfers on a byte (8-bit), word (16-bit), or
long word (32-bit) basis. If a DMA's port address
is a memory address that is auto-incremented or
auto-decremented after each transfer, the size of
the data transfer determines whether the memory
address is incremented or decremented by a factor
of 1, 2, or 4. For word and long word transfers
to or from memory locations, the memory address
must be even-valued (that is, the least
significant bit of the memory address must be 0).

9.5.2 DMA Transfer Modes

9-10

>

RELEASE BUS
(CPU EXECUTES
AT LEAST ONE

MACHINE CYCLE)

L * •>*
t I V ***

INTERRUPT
RELEASE BUS

1 ^ ’ ■■ "

■ ^ r d y S * .
ACTIVE — —

R D Y ^S w
ACTIVE --1

ENABLE
DMA

INTERRUPT
RELEASE BUS

YES

REQUEST
BUS

TRANSFER
ONE

BYTE OR
WORD

SET
STATUS

FLAG

T
N ~ T * » ' V?* ? X INTERRUPT

RELEASE BUS

NO

Figure 9-8a. Single Transaction Mode Figure 9-8b. Burst Mode Figure 9-8c. Continuous Mode

Figure 9-8. Modes of Operation

fransfers of unaligned data on 16-bit buses can be
accomplished v/ia byte transfers only. Long word
transfers are used in applications where the Z280
MPU is acting as a DMA controller for a system
with a 32-bit bus, such as a Z80,000-based
system. During long word transactions, the Z280
MPLTs DMA channel provides only 24 bits of the
address; the upper 8 bits of the 32-bit address
have to be generated with external logic. Long
word transfers are supported only in the flyby
mode with the on-chip cache programmably disabled.

«

9.^,3 End-of-Process

An enable bit in the DMA Master Control register
allows the Interrupt A input to be used as an
end-of-process (LOP) input during DMA trans­
actions. When enabled, transfers by DMA channels
can be prematurely terminated by a low cm the LOP
(interrupt A) line. Recognition of the LOP signal
is not affected by the state of the Interrupt
Request Enable bit for interrupt A in the CPU’s
Master Status register.

If the LOP signal goes active during the read
portion of a flowthrough transaction, the DMA
activity is aborted before the write portion of
that transaction. if LOP becomes active during
the write portion of a flowthrough transaction or
during a r 1 > b > transaction, that transfer is
completed before stopping the DMA operation.

When an active LOP signal terminates a DMA
operation, the LOP Signaled (EPS) status bit in
that channel’s Transaction Descriptor register is
automatically set to 1 and the Enable bit in that
same register is cleared to 0. If that channel’s
Interrupt Enable bit is set to 1, an interrupt
request to the CPU is generated.

The EOP signal is level-sensitive and shared by
all four on-chip DMA channels. Thus, if an active
EOP signal terminates the activity of one DMA
channel and another DMA channel immediately
requests the bus, the second DMA’s activity is
terminated before any transactions can be
generated if EOP is still active. In other words,
the second DMA channel also recognizes the LOP
signal, and so on. Therefore, in order for the
currently active DMA channel to be the only
channel whose activity is terminated, EOP should
be asserted for only one bus clock cycle in
systems where the bus clock frequency is equal to
or one-half of the processor clock frequency; EOP
should be asserted for one-half of a bus clock
cycle in systems where the bus clock frequency is
one-fourth of the processor clock frequency.

If the end-of-process capability is enabled, a
single input to the Z280 MPU can act as both the
Interrupt A and the EOP signal; it acts as the
interrupt A Request line when the CPU controls the
bus and as the EOP line when a DMA channel
controls the bus. If an EOP signal terminates a

9-1 1

DMA operation, and that signal is still asserted
when the CPU regains control of the bus, then the
signal is interpreted as an interrupt request.
Thus, a single signal can be used to stop DMA
activity and generate an interrupt, if so
desired. Note that the interrupt request
generated by the DMA channel and the interrupt
request generated by an active signal on the
Interrupt A line are different interrupt requests,
each with its own priority and its own enabling
bit in the CPU’s Master Status register.

9.5.4 Priority Resolution

Prioritization of the four on-chip DMA channels is
implemented via an internal "service request"
latch. A DMA channel generates a service request,
indicating that the channel needs to gain control
of the bus, if that channel’s Enable bit in the
Transaction Descriptor register is set to 1 and an
active RDY signal is asserted. This service
request signal is latched in the service request
latch only if all preceding service requests have
already been serviced (that is, there are no
service requests active in the latch). Once a
service request is latched, the service request
latch is "closed" to all other service requests
until the current requests are serviced; the
latched requests are serviced in priority order,
where DMA channel 0 has highest priority and DMA
channel 3 has lowest priority. When all latched
service requests have been serviced, the latch is
"opened" so that new service requests can be
latched.

This service request mechanism provides for
, ' • !, . 1 1 ;»• . * 4 .• ,>* V < V . . X -, • • • . ‘ f

non-preemptive prioritization' of DMA activity.
For example, if DMA channel 1 requires servicing
while the other channels are quiescent (that is,
not currently controlling the bus or making a
service request), channel 1 ’s service request is
latched and the service request latch is closed.

Thus, no other channel can preempt channel 1's
activity. if channels 0 and 2 activate service
requests while channel 1 is being serviced, both
those requests will be latched after channel 1 's
activity is completed, and channel 0 will be
serviced next, followed by channel 2. No new
service requests are latched until both channels
0 and 2 have been serviced, and so on.

All service requests from the on-chip DMA channels
have priority over bus requests made via the
BUSREQ input by external DMA controllers.

The Z280 MPU's on-chip DMA devices can be linked
together to provide for DMA transfers to
non-contiguous memory locations. In a linked
configuration, one channel, called the master DMA,
controls the actual data transfers to the memory
and/or peripheral devices; the second channel,
called the linked DMA, is used to load the master
DMA’s control registers from memory when the
master DMA completes an operation. The master DMA
signals the linked DMA when a transaction is
completed via an internal "ready" input to the
linked DMA. The linked DMA then initiates the
transfers that load the master DMA’s control
registers from memory, allowing the master DMA to
perform multiple data transfer operations without
any CPU intervention.

Control bits in the DMA Master Control register
allow DMA3 to be linked to DMA1, with DMA1 the
master DMA and DMA3 the linked DMA, and DMA2 to be
linked to DMAO, with DMAO the master DMA and DMA2
the linked DMA.

When the linked DMA loads the master DMA's
registers, the registers are written in the
following order:

t Destination Address register (least significant
word)

• Destination Address register (most significant
word)

• Source Address register (least significant
word)

m Source Address register (most significant
word)

• Count register

• Transaction Descriptor register .
« .

«

After the six words have been written to the
master DMA, the master DMA deasserts the ready
signal to the linked DMA and beqins the new
transfer operation. For Z-8US configurations of
the Z280 MPU, the linked DMA uses six word
transactions on the bus to program the master DMA;
for Z80 Bus configurations, the linked DMA uses
twelve byte transactions to program the master
DMA, with the least significant byte of each word
being transferred first.

9.5.5 DMA Linking

9-12

Control bits in the DMA Master Control reqister
also allow DMAO to be pruqrammably linked to the
on-chip ‘JART's receiver and DMA1 to be linked to
the UARf*s transmitter. If so linked, an internal
f,readyM siqnal to DMAO is automatically generated
when the UARf's receive buffer is full.
Similarly, an internal "ready" siqnal to DMA1 is
automatically generated when the LIART's transmit
buffer is empty. The external ROY inputs are
ignored while in this configuration.

9.5,6 DMA Registers

DMA registers consist of a DMA Master Control
reqister that specifies the general configuration
of all four channels, and a Transaction Descriptor
register, Source Address register, Destination
Address reqister, and Count reqister for each DMA
channel. All DMA registers are accessed usinq
word I/O instructions.

The DMA Master Control register is cleared to all
zeros by a reset, unless bootstrap mode is enabled
during the reset operation (see sections 3.2.1 and
9.7). Bits 7 through 13 of this register are not
used.

9.5.6.2 DMA Transaction Descriptor Register

Lach DMA channel has its own 16-bit Transaction
Descriptor register. The Transaction Descriptor
register (Figure 9-10) describes the type of DMA
transfer to be performed and contains control and
status informat ion.

TC DAD

Figure 9-10. Transaction Descriptor Register

4 c 7- •r; ► ' t

9.5.6.1 DMA Master Control Reqister

The 16-bit DMA Master Control reqister is illus­
trated in Figure 9-9. The bit fields within this
reqister are described below.

15

[1

0

1 1 1 0 0 0 0 1 SR1 SRO EOP D3L D2L D1T DOR j

Figure 9-9. DMA Master Control Register

DMAO to Receiver Link (DOR). While this bit is
set to 1, DMAO is linked to the on-chip UARPs
receiver.

DMA1 to Transmitter Link (D1T). While this bit is
set to 1, DMA] is linked to the on-chip UART's
transmitter.

DMA2 Link (D2L). While this bit is set to 1, DMA2
is linked to DMAO.

DMA3 Link (D3L). While this bit is set to 1, DMA3
is linked to DMA1.

End-of-Process (EOP). While this bit is set to 1 ,
the Interrupt A input acts as an Fnd-of-Process
input for the active DMA channel during DMA
operations.

Software Ready for DMAO (SRO). While this bit is
set to 1, DMAO requests use of the system bus if
enabled.

Software Ready for DMA1 (SR1). While this hit is
set to 1, DMA1 requests use of the system bus if
enabled.

End-of-Process Signaled (EPS). This status bit is
set to 1 automatically when an active Fnd-of-
Process signal prematurely terminates a DMA
transfer. This bit can be set to 1 or cleared to
0 under software control.

Destination Address Descriptor (DAD). This 3-bit
control field determines the type of location
(memory or I/O) to be accessed as the destination
port during DMA transfers, and whether the desti­
nation address is to be incremented, decremented,
or left unchanged between transfers, as shown in
Table 9-4. When memory addresses are auto-
incremented or auto-decremented, the incrementing
or decrementing value is determined by the size of
the data transfer, as specified in the ST field.
I/O port addresses are always auto-incremented and
auto-decremented by 1 .

Table 9-4. Encoding of DAD and SAD Fields in DMA
Transaction Descriptor Register

Encoding Address Modification Operation

000 Auto-increment memory location
001 Auto-decrement memory location
010 Memory address unmodified by transaction
011 Reserved
100 Auto-increment I/O location
101 Auto-decrement I/O location
110 I/O address unmodified by transaction
111 Reserved

Transfer Complete (TC). This status hit is set to
t automatically when the Count register has
reached zero. This bit can be set to 1 or cleared
to 0 under software control.

9-13

Transaction Type (Type). This 2-bit control field
specifies the type of DMA operation to be
performed, as shown in Table 9-5.

Table 9-5. Encoding of Type Field in
Transaction Descriptor Register

Encoding DMA Operation

00 Flowthrough

01 Reserved

10 Flyby write (peripheral-to-memory)
11 Flyby read (memory-to-peripheral)

Bus Request Protocol (BRP). This 2-bit control
field determines the transfer mode for the DMA
operation, as shown in Table 9-6.

Table 9-6. Encoding of BRP Field in
Transaction Descriptor Register

Encoding DMA Transfer Mode

00 Single transaction
01 Burst
10 Continuous
11 Reserved

Size of Transfer (ST). This 2-bit control field
specifies the size of the entity to be transferred
during each DMA-controlled transaction, as shown
in Table 9-7. If auto-increment or auto-decrement
of a source or destination memory address is
specified in the SAD or DAD fields, then the state
of this field determines the size of the increment
or decrement operation.

Table 9-7. Encoding of ST Field in
Transaction Descriptor Register

Size of Number to Increment
Encoding Transfer or Decrement By

00 Byte 1
01 Word 2

10 Long word 4
11 Reserved

Interrupt Enable (IE). While this bit is set to
1, the DMA channel generates an interrupt request
to the CPU either when the Count register goes to
zero, indicating the completion of a DMA
operation, or when an End-of-Process signal
prematurely terminates a DMA operation. While
this bit is cleared to 0, no interrupt request is
generated.

Source Address Descriptor (SAD). This 3-bit
control field determines the type of location
(memory or I/O) to be accessed as the source port
during DMA transfers, and whether the source
address is to be incremented, decremented, or left
unchanged between transfers, as shown in Table
9-4.

DMA Enable (EN). While this bit is set to 1, the
DMA channel is enabled; while enabled, the DMA can
request control of the system bus and, upon
becoming bus master, initiate transactions on the
bus. While this bit is a 0, the DMA channel is
disabled and cannot request control of the bus.
The DMA registers can be accessed regardless of
the state of this bit.

For DMAO, a reset loads a 0100^ into the Trans­
action Descriptor register. For the remaining
three channels, the EN, IE, TC, and EPS bits are
all cleared to 0 by a reset, and the remaining
fields are unaffected.

9.5.6.3 Count Register

Each channel has a 16-bit Count register that is
programmed to contain the number of DMA transfers
to be performed. When the contents of the Count
register reach zero (terminal count), further
requests on the RDY line are ignored, and, if the
IE bit in the Transaction Descriptor register is
set to 1 , an interrupt request is generated.

A reset loads a 0100^ into DMAO's Count
register; the other channels' Count registers are
unaffected by a reset.

• ■ , . ^ . , , i * j • ' • » • - » > ‘ \t r ’ f] X {

9.5.6.4 Source Address and Destination Address
Registers

The 24-bit Source Address register and Destination
Address register hold the port addresses used
during DMA transfers. These are physical
addresses that are not translated by the MMU. In
flyby mode, only one of these registers is used to
supply the address for the transaction, as
determined by the Type field in the Transaction
Descriptor register. The contents of these
registers can be automatically incremented or
decremented by each DMA transaction, as determined
by the SAD and DAD field in the Transaction
Descriptor register.

The entire 24-bit Source Address or Destination
Address register is read and written via two word

accesses to the register. Twelve bits of the
address are accessed by each word I/O operation;
the format used when accessing these registers is
shown in Figure 9-11.

15 0

f— 1 1 A11 • • •

15 0

I A23 • 1 1 - U J

Figure 9-11. Source and Destination
Address Registers Format

DMAO's Destination Address register is cleared to
0 by a reset; all other Source and Destination
Address registers are unaffected by a reset.

All DMA registers are located in I/O page FF|̂ .
The DMA Master Control register is accessed at I/O
port address FFxxIF. Table 9-8 lists the I/O port
addresses for the other DMA registers. All DMA
registers can be read or written using word I/O
instructions.

Table 9-8. I/O Addresses of DMA Registers

DMA Channel
Register DMAO DMA1 DMA2 DMA3

Destination
Address
(bits 0-11)

FFxxOO FFxx08 FFxxlO FFxx18

Destination
Address
(bits 12-23)

FFxxOI FFxx09 FFxx11 FFxx19

Source Address
(bits 0-11)

FFxx02 FFxxOA FFxx12 FFxxIA

Source Address
(bits 12-23)

FFxx03 FFxxOB
• 2 ' ' - >;

FFxx13 FFxxlB

Count FFxx04 FFxxOC FFxx14 FFxxIC

Transaction FFxx05 FFxxOD FFxx15 FFxxlD
Descriptor

All addresses are in hexadecimal,
"x ” means "don ’t care".

No checking is performed by the hardware to deter­
mine if an invalid configuration is specified in
the DMA registers, such as specifying word trans­
actions on 8-bit data bus configuration of the
Z280 MPU; in such cases, DMA behavior is
unpredictable.

•

lhis section describes a typical sequence of
events when a DMA channel is used in flowthrough
or flyby mode to control data transfers.

Before a DMA channel can begin operation, that DMA
channel must be configured for the particular
application by loading its Destination Address,
Source Address, Count, and Transaction Descriptor
registers. DMA operations cannot take place while
the CN bit in the Transaction Descriptor register
is cleared to 0. Thus, the EN bit should be
cleared to zero while configuring the DMA channel,
and set to 1 as the last step in the configuration
process; the EN bit can be set at the same time
that the other bit fields in the Transaction
Descriptor register are specified.

Once the EN bit is set to 1, the DMA channel
requests use of the system bus only after an
active Rt>V signal is received. The Roy signal is
sampled by the DMA on the rising edge of each
processor clock cycle. For DMAO and DMA1, the ftt)Y
signal is the logical OR of the external RbV input
and the software RDY bit in the DMA Master Control
register.

When the system bus is available for DMA
transfers, the highest priority DMA channel with a
request pending becomes the bus master. The
priority of the on-chip DMA channels from highest
to lowest is DMAO, DMA1, DMA2, and DMA3. The
external Bus Request input has the next lowest
priority after the on-chip DMA channels.

The number of data transfers performed by a DMA
that has gained control of the bus is determined
by the current transfer mode (single transaction,
burst, or continuous) and the contents of the
Count register. A DMA channel in single trans­
action mode relinquishes the bus after a single
data transfer; a DMA channel in burst mode
relinquishes the bus when RDY is deasserted or
when terminal count is reached; a DMA channel in
continuous mode relinquishes the bus when the
terminal count is reached. Regardless of the
transfer mode, a DMA channel will relinquish the
bus if an EOP is signalled or the terminal count
is reached.

if the destination for a DMA-controlled data
transfer is a memory location that corresponds to
an entry in the on-chip memory (in either the
cache or fixed-address mode), the on-chip memory
is updated to reflect the new contents of that
memory location.

9,5.7 DMA Sequence of Events

9-15

For each DMA-controlled data transfer on the bos,
that DMA's Count register is decremented by 1,
regardless of the size of the data transferred.
The Destination Address and Source Address
registers might also be incremented or decre­
mented, as determined by the DAD, SAD, and ST
fields in the Transaction Descriptor register.
When a DMA operation reaches completion, either by
assertion of an EOF signal or by reaching terminal
count (a count of 0) in the Count register, the EN
bit in the Transaction Descriptor register is
automatically cleared to 0. If the IE bit is set
to 1, an interrupt request to the CPU is
generated. If the DMA operation terminated due to
an active EOP signal, the EPS status bit is set to
1; if the DMA operation terminated due to reaching
terminal count, the TC status bit is set to 1.

............... • - 1 i;
9.5.8 DMA Programming: Linked DMAs

When two DMA channels are linked together, the
master DMA's registers are written via
memory-to-peripheral data transfers initiated by
the linked DMA. Thus, to begin DMA operations, the
linked DMA must be programmed to load the master
DMA. While the linked DMA is being configured,
the master DMA must be prohibited from asserting a
RDV signal to the linked DMA. The internal RDY
signal from the master DMA to the linked DMA is
controlled by the TC status bit of the master DMA;
therefore, before configuring the linked DMA, the
TC bit of the master DMA's Transaction Descriptor
register should be written with a 0. Then, the
linked DMA is configured by writing to its
registers. Finally, the TC bit in the master DMA
should be set to 1; this causes the internal RDY
signal to the linked DMA to go active, which in
turn causes the linked DMA to request the bus and,
upon acknowledgement of that request, initiates
the transactions that program the master DMA.

The linked DMA must be configured for flowthrough-
type data transfers. The transfer size must match
the size of the external data bus (that is, byte
for Z80 bus configurations and word for Z-BUS
configurations). The Source Address register is
loaded with the starting address of the memory
block that holds the data to be written to the
master DMA's registers; for the Z-BUS, this
starting address must be even-valued (A0=0). The
SAD field of the Transaction Descriptor register
should specify an auto-increment or auto-decrement
of the memory address. The Destination Address
register must be set to FFxxOO^ when DMA2 is the
linked DMA, or FFxxOB^j when DMA3 is the linked
DMA ("x" means don't care). The DAD field in the
linked DMA's Transaction Descriptor register

should be set to 10¾ (auto- increment I/O
address). Burst mode transactions must be
specified. The contents of the Count register
vary depending on the number of times that the
linked DMA is required to reconfigure the master
DMA.

When the master DMA has completed a transaction
(terminal count is reached), an internal RDY
signal to the linked DMA is activated. If the
linked DMA is enabled, the linked DMA will
generate the transactions that program the master
DMA's registers. (The linked DMA's external RDV
input is ignored when DMA linking is specified.)

When the linked DMA loads the master DMA's
registers, the registers are written in the
following order:

* Destination Address register (least significant
word)

e Destination Address register (most significant
word)

© Source Address register (least significant
word)

e Source Address register (most significant word)

m Count register

• Transaction Descriptor register

After the six words have been written to the
master DMA, the master DMA deasserts the ready
signal to the linked DMA and begins the new

’transfer operation. For Z-BUS configurations of
the Z280 MPU, the linked DMA uses six word
transactions on the bus to program the master DMA;
for Z80 Bus configurations, the linked DMA uses
twelve byte transactions to program the master
DMA, with the least significant byte of each word
being transferred first.

«

Both the master and linked DMAs can be programmed
to generate an interrupt request to signal the end
of DMA activity. If the IE bit of the master DMA
is set, an interrupt request is generated when the
master DMA reaches terminal count and the linked
DMA's TC bit is set (that is, when the last block
has been transferred), or if EOP is asserted. If
the IE bit in the linked DMA is set, an interrupt
request is generated when the linked DMA reaches
terminal count (that is, when the last block
transfer has been programmed into the master DMA),
or if EOP is asserted.

9-16

The DOR and Dll bits of the DMA Master Control
register specify whether DMAO Is linked to the
(JAR 1 receiver and DMA1 is linked to the UARf
transmitter, respectively.

When DMAO is linked to the UAR1 receiver, the
state of the Source Address register and the SAD
field in the Transaction Descriptor register do
not affect DMA operation. fhe Destination Address
register is programmed with the starting address
of the memory area or the address of the I/O
device that will be used to store the received
data; if the destination port is a memory block,
the DAD field should specify an auto-increment or
auto-decrement of the memory address.
Flowthrouqh-type transactions and the byte
transfer size must be specified. Single, burst,
or continuous mode operation can be used.

When DMA1 is linked to the UART transmitter, the
Source Address register is programmed with the
startinq address of the memory area or the address
of the I/O device that holds the data to be
transmitted; if the source is a memory area, the
SAD field should specify an auto-increment or
auto-decrement of the memory address. The
Destination Address register must be set to
xxxx18|_jf and the DAD field to a 110g.
Flowthrough type transactions and the byte
transfer size must be specified. Single, burst,
or continuous mode operation can be used.

9.6 UART

9.5.9 DMA Programming: DMAs Linked to UART errurs. Transmission and reception are performed
independently.

The UART uses the same clock frequency for both the
transmitter and the receiver. The UART's clock input
can be generated externally or internally. For
externally generated clocks, Counter/Timer 11 s input
line is used as the source of the UART's clock in
addition to being an input to the counter/timer. The
maximum external clock frequency is the CPU clock
divided by 4. Alternately, the UART's clock can be
provided by the output pulse from Counter/Timer 1,
allowing the internal processor clock to be used for
bit rate generation. The UART's clock input is
further scaled by a factor of 1, 16, 32, or 64 for
clocking the transmitter and receiver.

The UART can be used in an interrupt-driven or
polled environment. If enabled, separate transmit
and receive interrupt requests are generated by
the UART. Transmit interrupts occur when the
transmitter's data buffer is emptied, and receive
interrupts occur when an entire character is
received or an error is detected. In polled
environments, status bits in UART registers can be
read to determine if the transmit buffer is empty
or receive buffer is full. As described in
section 9.5.9, DMA channel 0 can be linked to the
receiver and DMA channel 1 to the transmitter to
provide for DMA-controlled transfers between the
UART and memory.

The UART uses two external pins, Transmit (Tx) and
Receive (Rx). Data that is to be transmitted is
placed serially on the Transmit pin and data that
is to be received is read from the Receive pin.

The on-chip universal asynchronous receiver/
transmitter (UART) provides the Z280 MPU with
serial I/O capability. The full-duplex UART
transmits and receives serial data usinq any
common asynchronous data communication protocol.

Fiqure 9-12 illustrates the general format for an
asynchronous transmission usinq the Z280 MPU's
UART. Characters can contain five, six, seven, or
eight bits, plus an optional even or odd parity
bit. The transmitter can supply one or two stop
bits per character. Break outputs can be produced
by the transmitter at any time under program
control; the receiver can detect breaks as well
as parity errors, framing errors, and overrun

START PARITY — | START— | PARITY

The UART contains five registers. UART operation
is controlled by three registers: the UART
Configuration register, which contains controls
for both the transmitter and receiver, the
Transmitter Control/Status register, and the
Receiver Control/Status register. Received data
is read from the Receive Data register, and data
to be transmitted is written to the Transmit Data
register.

9.6.1 Transmitter Operation

Transmit operations are performed only /vhen the
Transmitter Enable bit in the Transmitter
Control/Status register is set to 1. In order to
transmit data, the data character is written to
the Transmit Data register. The UART automati­
cally adds the start bit, the programmed parity
bit (if so specified), and the programmed number
of stop bits to the data character to be trans­
mitted. The number of bits per character, the
number of stop bits per character, and the type of

Figure 9-12. General Format for an
Asynchronous Transmission

9-17

parity (even, odd, or none) is determined by the
contents of the UART Configuration register. When
the transmit character size is five, six, or seven
bits, the unused most significant bits in the
Transmit Data register are ignored by the UARl.

Serial data is shifted out of the transmitter on
the Tx pin at a rate egual to 1, 1/16th, 1/32nd,
or 1/64th of the clock signal supplied to the
UART, as determined by the contents of the UART
Configuration reqister. Serial data is shifted on
the falling edge of the clock input.

The Tx output line is held high (markinq) when the
transmitter has no data to send or is disabled.
If transmit interrupts are enabled, an interrupt
reguest is generated when the Transmit Data
reqister is emptied. Under proqram control, break
conditions can be qenerated, wherein the Tx line
is held low (spacinq) until the break command is
cleared.

9*6.2 Receiver Operation

Receive operations are performed only when the
Receiver Enable bit in the Receiver Control/Status
reqister is set to 1. A low (spacinq) condition
on the Receive input line indicates a start bit;
if the low persists for at least one-half of a bit
time, the start bit is assumed to be valid and the
data input is sampled at mid-bit times until the
entire character is assembled. Thus, reception is
protected from transients on the input line by
checkinq for a valid start bit one-half bit time
after detecting a hiqh-to-low transition on the
Receive input; if the low does not persist (as
with a transient), the character assembly process
is not started. If the bit time is one clock
period (the x1 clock mode), bit synchronization
must be accomplished externally; received data is
sampled on the risinq edqe of the clock.

Received characters are read from the Receive Data
register. If parity is enabled, the parity bit is
assembled as part of the character for character
lenqths other than eight bits. If the resulting
character is still less than eiqht bits, V s are
appended in the unused hiqh-order bit positions.
For example. Figure 9-13 illustrates how the
character is assembled in the Receive Data
register when receiving 5-bit characters with
parity.

For each character assembled by the receiver,
error flags in the Receiver Control/Status
reqister indicate if an error condition was
detected. These flags are loaded when the
character assembly process is completed--that is,
when the character is loaded into the Receive Data
register from the receiver’s shift register. The
receiver checks for parity errors, framinq errors,
and overrun errors for each received character.

A parity error occurs when the parity bit of the
received character does not match the programmed
parity, as determined by the contents of the UART
Configuration reqister.

A framinq error occurs if a character is assembled
without any stop bits (that is, if a low level is
detected for the stop bit). A built-in checkinq
process prevents a framinq error from beinq
interpreted as a new start bit; detection of a
framinq error results in the addition of one-half
of a bit time to the point at which the search for
a new start bit is begun.

An overrun error occurs if a new character is
assembled and loaded into the Receive Data
reqister before the previous character has been
read from that register. Since the receiver is
buffered by the Receive Data reqister in addition
to the receiver shift register, ample time is
available for responding to a receiver interrupt
and accepting a received character before the next
character is assembled by the receiver.

9.6.3 UART Registers

UART operation is controlled by three 8-bit
registers: the UARf Configuration register,
Transmitter Control/Status reqister, and Receiver
Control/Status reqister. Data to be transmitted
is written to an 8-bit Transmit Data reqister, and
received data is read from an 8-bit Receive Data
reqister. All UART registers are accessed usinq
byte 1 /0 instructions.

9.6.3.1 UART Configuration Reqister

The 8-bit UART Configuration reqister (Figure
9-14) contains control information for both the
receiver and transmitter. The control fields
within this reqister are described below.

Figure 9-13. Byte Assembled by Receiver
for 5-bit Character with Parity Figure 9-14. UART Configuration Register

9-18

Loop Back Enable (LB). When set to 1, the UART is
in local loopback mode; in this mode, the internal
transmit data line is tied to the internal
receiver input line and the external receiver
input pin is iqnured. Thus, all transmitted data
is automatically received. When this bit is
cleared to 0, the transmitter and receiver operate
independently.

Clock Rate (CR). This 2-bit field determines the
multiplier between the UART clock and data rates
(that is, the number of clocks per bit time), as
specified in Table 9-9. The same data rate is
used by both the transmitter and receiver. If the
X1 clock rate is selected, bit synchronization
must be accomplished externally. In the X1 mode,
the transmitter sends data on the falling edge of
the clock and the receiver samples data on the
rising edge of the clock.

Table 9-9. CR Field of UART
Configuration Register ..

CR Field i UART Clock Rate

00 X1
01 X16
10 X32
11 X64

Clock Select (CS). The state of this bit
specifies the clock input for the UART. When this
bit is set to 1 , counter/timer I's output pulse
supplies the UART clock. When this bit is cleared
to 0, counter/timer I’s clock input pin provides
the UART clock signal, thus allowinq the use of an
externally-generated clock. The content of the
IPA field of C/T I's Configuration reqister does
not affect these UART clocking modes.

Table 9-10. If this field is chanqed while a
character is beinq transmitted or received, the
results are unpredictable.

Table 9-10. BC Field of UART Control Register

BC Field Bits per Character

00 5
01 6

10 7
11 8

A reset clears the UARl Configuration reqister to
all zeros, unless bootstrap mode is selected (see
section 9.7).

9.6.3.2 Transmitter Control/Status Register

The 8-bit Transmitter Control/Status reqister,
shown in Figure 9-15, specifies the operation of
the UART transmitter, as described below.

7
IE 0 SB BRK FRC VAL

0
BE

Figure 9-15. Transmitter Control/Status Register

Transmitter Buffer Empty (BE). This status bit is
automatically set to 1 whenever the Transmit Data
reqister becomes empty and cleared to 0 whenever a
character is loaded into the Transmit Data
reqister. The BE bit is controlled by the UART
circuitry; it can be read via an I/O read but is
unaffected by an 1/0 write to this register. A
reset loads a 1 into this bit.

Parity (P). When set to 1, an additional bit
position (in addition to the number of bits per
character specified in the BC field) is added to
each transmitted character and expected in each
received character; this additional bit is the
parity bit. Parity bits in received characters
are assembled as part of the character for
character lengths of less than 8 bits.

Parity Even/Odd (E/O). If parity is specified (P
= 1), this bit determines whether an odd or even
parity bit is added to transmitted characters and
whether odd or even parity is checked for in
received characters. E/Q = 1 specifies even
parity and E/0 = 0 specifies odd parity. If P =
0, then this bit is ignored.

Bits per Character (B/C). This 2-bit field
determines the number of bits per character in
both the transmitter and receiver, as specified in

Value (VAL). This bit determines the value of the
bits transmitted by the UART when the FRC bit is
set to 1 and "dummy" characters are loaded into
the Transmit Data reqister. When the VAL bit is
set to 1 , a mark character (all 1 s) is
transmitted; when the VAL bit is cleared to 0, a
break character (all 0s) is transmitted.

Force Character (FRC). When this bit is set to 1,
writing a character to the Transmit Data register
causes the transmitter output to be held hiqh or
low (dependinq on the state of the VAL bit) for
the length of time required to transmit the
character. Note that characters written to the
Transmit Data register are not themselves trans­
mitted while FRC is set to 1. When FRC is cleared
to 0, the transmitter operates normally, sendinq
characters that are written to the Transmit Data
reqister.

9-19

Send Break (BRK). When this hit is set to 1, the
transmitter is forced into the spacing condition,
wherein the transmit data output is forced to 0.
When this bit is cleared to 0, normal transmitter
operation resumes*

Stop Bits (SB). The state of this bit determines
the number of stop bits appended to each character
by the transmitter. Setting this bit to 1
specifies two stop bits per character; clearing
this bit to 0 specifies one stop bit per
character.

Transmitter Interrupt Enable (IE). When this bit
is set to 1 , an interrupt reguest is generated
whenever the Transmit Data register is emptied.
When this bit is cleared to 0, no tranmsit inter­
rupts are generated.

Transmitter Enable (EN). When this bit is cleared
to 0, the transmitter is disabled and the
transmitter output line is held hiqh (markinq).
When this bit is set to 1, the transmitter is
enabled and operates as specified by the UART
Configuration register and the Transmitter
Control/Status register. If this bit is cleared
while a character is in the process of beinq
transmitted, transmission of that character is
completed.

A reset sets the Transmitter Control/Status
register to a 01^. Bit 5 of this reqister is
not used.

Parity Error (PE). When parity is enabled (P = 1
in the UART Configuration register) this bit is
automatically set to 1 if a character is received
without the specified parity. This bit is
latched; once set, it remains set until cleared
via software.

Receiver Overrun Error (OVE). This bit is
automatically set to 1 if a new character is
assembled and loaded into the Receive Data
register before the previous character has been
read from that register. Only the most recently
received character is flagged with this error, but
once this character is read, the OVE bit remains
latched until cleared via software.

Receiver Character Available (CA). This bit is
automatically set to 1 when a received character
is available in the Receive Data register and
automatically cleared to 0 when the Receive Data
register is read. This bit is controlled by UART
circuitry; it can be read via an 1/0 read but
cannot be altered by an 1 /0 write to this
register.

Receiver Interrupt Enable (IE). When this bit is
set to 1 , an interrupt request is generated
whenever the receiver has a character available in
the Receive Data register or when a receiver error
is detected.

Receiver Enable (EN). When set to 1, receiver
operation is enabled. This bit should be set
after programming the UART Configuration register.

9.6.3.3 Receiver Control/Status Register

The 3-bit Receiver Control/Status register, shown1
in Figure 9-16, specifies the operation of the
UART receiver, as described below.

The Receiver Control/Status register is cleared
to all zeros by a reset, unless bootstrap mode is

'selected (see section 9.7). Bit 5 of this
register is not used.

Figure 9-16. Receiver Control/Status Register

Receiver Error (ERR). This bit is the logical OR
of the PE, GVL, and FE bits.

Framing Error (FE). This bit is automatically set
to 1 if the receiver detects a framing error when
assembling the received character. Detection of a
framing error adds an additional one-half bit time
to the character to ensure that the framing error
is not interpreted as a new start bit. This bit
is not latched; once set, it remains set only
until a new character is assembled and shifted
into the Receive Data register.

All UARf registers are in 1/0 page EE and are
accessed via byte 1/0 instructions. Table 9-11
lists the 1/0 port addresses for the UART
registers.

Table 9-11. I/O Addresses of UART Registers

Register
I/O Port
Address

UART Configuration Register FExx10
Transmitter Control/Status Register FExx12
Receiver Control/Status Register FExx14
Receive Data Register FExx16
Transmit Data Register FExx18

All addresses are in hexadecimal,
“ x” means "don ’t care” .

9-20

9.6,4 UART Operation

Operation of the UART's transmitter and receiver
are enabled by the Transmitter Enable and Receiver
Enable control bits in their respective
control/status registers. Before enabling the
UART by setting one of those bits, the UART’s
configuration must be determined by programming
the UART Configuration register. If the UART
Configuration register is to be altered during
system operation, the transmitter and receiver
should be disabled before writing to the
Configuration register, and then re-enabled
afterwards.

»

Once enabled, the UART can be used in an
interrupt-driven or polled environment. Separate
transmit and receive interrupts are controlled by
the interrupt enable bits in the control/status
registers. Receive interrupts are generated
whenever a new character is available in the
Receive Data register or when an error is
detected. Transmit interrupts are generated
whenever the Transmit Data register is emptied.

For polled environments, the Character Available
bit in the Receiver Control/Status register must
be monitored to determine when a character is to
be read from the Receive Data register; this bit
is automatically cleared when the received data is
read. For transmitting characters, the Transmit
Buffer Empty flag should be checked before writing
to the Transmit Data register to prevent the
overwriting of transmitted data.

The error flags in the Receiver Control/Status
register are loaded at the same time that the
received data character is moved from the
receiver’s shift register to the Receive Data
register. Since the parity and receiver overrun
error flags are latched, the error status reflects
any errors in the current character in the Receive
Data register plus any parity or overrun errors
that have been detected since the last write to
the Receiver Control/Status register. To maintain
correspondence between the state of the error
flags and the data in the Receive Data register,
the flags in the Receiver Control/Status register
should be read before the data.

Once the transmitter has been enabled, there are
two ways to produce a break output on the transmit
data line. Setting the BRK bit in the Transmitter
Control/Status register forces a break condition
on the transmit data output until that bit is
cleared. Alternatively, setting the FRC bit to 1

and clearing the VAL bit to 0 causes a break
condition on the transmit data output each time a
character is loaded into the Transmit Data
register; this break output persists for the same
amount of time that it would have taken to
transmit the data written to the Transmit Data
register had the FRC bit been 0. Note that the
characters written to the Transmit Data register
while the FRC bit is set to 1 are not actually
transmitted.

9.7 UART BOOTSTRAPPING OPTION

The on-chip UART and DMA Channel 0 can be used to
automatically initialize the Z280 MPU’s memory
with values received by the UART following a
reset. This system bootstrapping capability
permits ROMless system configurations, where
memory is initialized using a serial link prior to
the first Z280 MPU instruction fetch after the
reset. i U :T.*« - : i) V: t . ***r•

As described in Section 3.2.1 and Chapter 11,
bootstrap mode is selected by driving WAIT low and
AD^ high while RESET is asserted. The appropriate
UART and DMA registers are automatically
programmed as shown in Table 9-12 as a result of
selecting bootstrap mode. The UART is initialized
to receive data in 8-bit characters with odd
parity, an external clock source, and a x16 clock
rate. DMA Channel 0 is initialized with the link
to the UART receiver and end-of-process capability
enabled, and set up for flowthrough byte transfers
in continuous mode. The destination address
starts at memory location 0 , with an autoincrement
after each transfer, and a transfer count of 236
(100H).

Table 9-12. Reset Value of UART and DMA
Registers When Bootstrap Mode is Selected

Register
Initial Hex

Value

UART Registers

UART Configuration register E2
Receiver Control/Status register 80

DMA Registers

DMA Master Control register 0011
Channel 0 Transaction Descriptor register 8100
Channel 0 Destination Address register 000000
Channel 0 Source Address register Undefined
Channel 0 Count register 0100

9-21

If bootstrap mode is specified, the Z280 CPU
automatically enters an idle state when RESET is
deasserted. A minimum of 15 processor clock
cycles must elapse after RESET is deasserted
before tranmission of data to the UART receiver
begins. DMA Channel 0 is then used to transfer
characters received by the UART into memory. The
data received is placed in memory starting at

physical address 0. If an error is detected by
the IJART receiver, the Transmit Output (Tx) line
is driven low; external circuitry can use this
signal to restart the initialization procedure, if
so desired. After 256 bytes of data have been
received and transferred to memory, the Z280 CPU
automatically begins execution with an instruction
fetch from memory location 0 .

9-22

j

Chapter 10.
Multiprocessor Configurations

1 0 .1 INTRODUCTION (Figure 10-1): slave processors, tightly coupled
multiple CPUs, loosely coupled multiple CPUs, and

The Z280 MPU architecture provides support for coprocessors,
four types of multiprocessor configurations

a) SLAVE PROCESSOR b) TIGHTLY COUPLED c) LOOSELY COUPLED d) COPROCESSOR
MULTIPLE CPU MULTIPLE CPU

Figure 10-1. Multiprocessor Configurations

1 0 .2 SLAVE PROCESSORS

Slave processors, such as the Z8016 DMA Transfer
Controller or other DMA devices, perform dedicated
functions asynchronously to the CPU. The CPU and
slave processors share a local bus, where the CPU
is the default bus master. In order for a slave
processor to use the bus, it must request control
of the bus from the CPU and receive an
acknowledgement of that request.

Two Z280 MPU signals are provided for supporting
slave processors: BUSREQ and BUSACK. A bus
request is initiated by pulling the BUSREQ input
low. Several bus requestors may be wire-QRed to
the BUSREQ pin; priorities are resolved external
to the MPU, usually by a priority daisy chain.
The external BUSREQ signal generates an internal,
synchronous BUSREQ. If this signal is active at
the beginning of any bus cycle, the Z280 MPU will
relinquish the bus at the end of that bus

cycle (with the exception of the TSET instruction,
where the read-modify-write cycle is atomic). The
MPU suspends execution of the current instruction
and gives up control of the bus by 3-stating all
address, address/data, bus timing, and bus status
output pins. The BUSACK output is then asserted,
signaling that the bus request has been accepted
and the bus is free for use by the slave
processor. The Z280 MPU remains in the bus
disconnect state until BUSREQ is deasserted.

The BUSREQ input is sampled during each processor
clock period by the external bus interface logic
of the Z280 MPU. If BUSREQ is sampled active low
while the Z280 MPU is involved in an internal
operation, the external bus is relinquished to the
bus requestor immediately. Internal processing
can continue until a transaction involving the
external bus is required; the MPU then suspends
activity until regaining control of the bus. If
BUSREQ is sampled active during a CPU-generated

10-1

10.3,1 The Local Address Registertransaction on the external bus, the bus is not
relinquished nor CPU activity suspended until the
current transaction is completed.

The Z280 MPU regains control of the bus after
BUSREQ rises, continuing execution from the point
at which it was suspended. Any bus requestor
desiring control of the bus must wait at least two
bus cycles after BUSREQ has risen before asserting
BUSREQ again.

In the case of simultaneous bus requests from
multiple sources, the on-chip DMA channels have
higher priority than external slave processors in
Z280 MPU systems. After reset, the Z280 MPU
acknowledges an active BUSREQ signal before
performing any transactions.

10.3 TIGHTLY COUPLED MULTIPLE PRlkESSORS

Tightly coupled multiple CPUs execute independent
instruction streams from their own (local) memory
locations and communicate through shared memory
locations on a common (global) bus. Each CPU is
the default master of its local bus, but the
global bus master is chosen by an external
arbiter.

During each memory transaction while in multi­
processor mode, the Z280 CPU uses the Local
Address register to determine if that transaction
is to occur on the local or global bus. The Local
Address register includes a 4-bit Base field and a
4-bit Match Enable field (Figure 10-2). For each
bus transaction, the four most-significant bits of
the physical address (address bits A20 through
A23) are compared with the 4-bit Base field; the
Match Enable field specifies which bits are going
to be used during this comparison. If all the
corresponding address bits match the Base field in
the bit positions specified by the Match Enable
field, then the bus transaction can proceed on the
local bus without requesting the global bus. If
there is a mismatch in at least one specified bit
position, then the global bus is requested and the
bus transaction does not proceed until the global
bus acknowledge signal is asserted. (See section
3.2.3.)

7 0
ME23

LLi ME21 ME20 023 B22 B 21 B 20

Figure 10-2. Local Address Register

The Z280 MPU's multiprocessor mode of operation
supports tightly coupled multiple CPU
configurations. This mode is also useful when
configuring the Z280 MPU as an I/O processor in a
distributed processing system. Multiprocessor
mode is selected by setting the Multiprocessor
Configuration Enable (MP) bit in the Z280 CPU's
Bus Timing and Initialization register (see
Section 3.2.1). While in the multiprocessor mode,>-
the Z280 MPU is able to support both a local bus
and a global bus. The Z280 CPU is the default bus
master of the local bus, but must make a request
and receive an acknowledgement before performing
transactions on the global bus. Only memory
transactions can be performed on the global bus;
I/O transactions always use the local bus. The
range of memory addresses dedicated to the global
and local buses is determined by the contents of
the CPU's Local Address register.

While in the multiprocessor mode, Counter/Timer
0's I/O and IN pins are used as global bus request
(GREQ) and global bus acknowledge (GACK) signals,
respectively. GREQ is a three-state output; an
active low signal on this line requests use of the
global bus. An active low level on the GACK input
acknowledges a global bus request.

10.3*2 Bus Request Protocols

While in the multiprocessor mode, the BUSREQ and
BUSACK signals control use of the local bus in the
same manner as described in section 10.2. When a
local bus request is granted, as indicated by an
active BUSACK signal, the CPU places all output
signals, including GREQ, in the high-impedance
state.

When in control of its local bus, a Z280 CPU can
initiate transactions with devices on the global
bus that are shared with other CPUs. At any one
time, only one CPU can control transactions on the
global bus. Control of the global bus is
arbitrated by external circuitry. Before
initiating a transaction on the global bus, the
CPU requests control of the global bus from the
external arbiter circuitry by asserting GREQ and
waiting for an active GACK in response. (The
timing diagrams for global bus requests are shown
in Figures 12-15 and 13-19.) The GACK input is
asynchronous to the CPU clock; the Z280 CPU
synchronizes GACK internally. Once GACK is
asserted, the CPU performs the transaction on the
global bus. The CPU then deasserts GREQ and waits

10-2

I

for the arbiter circuit to deassert GACK. The CPU
always relinquishes the global bus by deasserting
GREQ after each global transaction is completed,
except during execution of a Test and Set (TSET)
instruction (both the data read and write are
completed before relinquishing the global bus) or

during a burst-mode memory transfer (the entire
sequence of burst-mode memory reads is completed

*

before relinquishing the global bus).

A state diagram of the bus request protocol is
shown in Figure 10-3.

t- • -i ■: ■. •’

STATE 0

(BUSREQ = L)#
(GACK = H)

GREQ = H
BUSACK = H

BUS = 2ST

STATE 1

BUSREQ = H

O GACK = L

(BUSREQ = H)*(GACK
(NEED_GBUS = H)

= H)

ERROR
STATE 2

GREQ = 3ST
BUSACK = L
BUS = 3ST

t : ■ • W * - ? .-. •

•

GREQ = L
BUSACK = H

BUS = 2ST

E j (GACK = LMBUSREQ = H)
(GACK = L) •

F A (BUSREQ = L)
STATE 3 STATE 4

GREQ = L H GREQ = H
BUSACK = H

BUS = 2ST
BUSACK = H

BUS = 2ST(GACK = L)»
[(BUSREQ = L)
+ (NEED GBUS - L)1

GACK = H GACK = H

ERROR

NOTES: Interface signals are High (H), Low (L), High or Low (2ST), or 3-stated (3ST).

NEED_GBUS is an active High signal internal to the CPU.

Transition Legend State Legend
A A local bus request occurs.
B The global bus arbiter grants control of the

global bus when no global bus request is
pending. This is an error. The CPU remains in
State 0.

C The CPU requests the global bus in response
to the internally generated signal
NEED_GBUS.

0 The local bus master relinquishes the bus.
E The global bus arbiter grants the global bus

to the CPU while no local bus request is
pending.

P The global bus arbiter grants the global bus
to the CPU while a local bus request is pend­
ing. The local bus request has preempted the
CPU.

G The global bus arbiter reclaims the global
bus before the CPU relinquishes the global
bus. This is an error. The CPU's response to
this error is undefined.

H The CPU relinquishes control of the global
bus when it no longer needs the global bus
or in response to a local bus request.

1 The global bus arbiter reclaims the global
bus.

State 0 The CPU controls the local bus and is
neither requesting nor controlling the
global bus.
The CPU can perform transactions on
the local bus.

State 1 The CPU has granted the local bus.
The CPU cannot perform transactions.

State 2 The CPU controls the local bus and is
requesting the global bus.
The CPU cannot perform transactions.

State 3 The CPU controls the local and global
buses.
The CPU can perform transactions on
the global bus.

State 4 The CPU controls the local bus and is
relinquishing control of the global bus.
The CPU cannot perform transactions.

Figure 10-3. State Diagram for CPU Bus Request Protocol

10-3

While a Z280 CPU is asserting GREQ and waiting for
an active GACK, if BUSREQ is asserted before GACK,
the CPU releases the global bus request after
GACK is asserted without performing any
transact ions.

The on-chip DMA channels may also initiate
transactions on the global bus. During each
DMA-controlled transaction, memory addresses
generated by a DMA channel are compared to the
contents of the Local Address register to
determine if the global bus is to be requested, in
the same manner as CPU-controlled bus
transactions.

If the automatic memory refresh mechanism is
enabled, refresh cycles are inhibited while either
the CPU or a DMA channel has requested the global
bus but not yet received the global bus
acknowledge. No refresh transactions are ever
performed on the global bus.

10.3.3 Examples of the Use of the Global Bus

The Z280 MPU!s multiprocessor mode of operation
facilitates the development of tightly coupled
multiprocessor systems and systems using the Z280
MPU as a front-end I/O processor.

Figure 10-4 is a block diagram illustrating the
use of multiple Z280 MPUs as tightly-coupled
processors. Access to the global memory via the
global bus is controlled by a centralized bus
arbitration circuit. The GACK circuit controls
the buffers that connect or isolate the global bus
from each MPU’s local bus. Each Z280 MPU can
access its local memory independent of the other
MPU’s activity. Only one MPU at a time can access
the shared global memory. Note that memory-mapped
I/O devices could also be shared using the global
bus. ««• - *....... * „ ■

GLOBAL
MEMORY

GLOBAL BUS

' t . , .<■ »‘* V * ■ >'■*, ■ / ■■

Figure 10-4. Tightly Coupled Processors with Shared Global Mem ory

Figure 10-5 shows a tightly coupled multiple Z280
MPU system without a global memory, where each
processor can directly access the local memory of
the other processor. For this system, priority
resolution logic would control both the local and
global bus requests. A global bus request from

one processor is used to generate a local bus
request to the other processor. When one
processor generates a global bus request, an
active GACK signal is not returned to that
processor until the other processor’s local bus is
available, as indicated by BUSACK.

10-4

r

Figure 10-5. Tightly Coupled Processors without Global Memory

Although both Figure 10-4 and 10-5 show only two
tightly coupled processors, more processors could
be added to these systems in a similar manner.

Figure 10-6 illustrates the use of a Z280 MPU as
an I/O processor in a Z8000-based system. The

Z280 MPU's GREQ signal is used as the bus request
signal to the Z8000 CPU; the Z8000 CPU's BUSACK
signal is input directly to the Z280 MPU's GACK,
as well as controlling the buffers that normally
isolate the Z280 MPU's local bus from the Z8000
CPU's bus.

Figure 10-6. Z280 MPU as an I/O Processor

j

10-5

10,4 LOOSELY COUPLEO MULTIPLE CPUS

Loosely coupled multiple CPUs generally
communicate through a multiple-port peripheral,
such as the Z8038 F10 (FIFO buffer I/O unit). The
Z280 MPU's I/O and interrupt facilities and the
on-chip DMA channels support loosely coupled
multiprocessing with the Z280 MPU.

.

10.5 COPROCESSORS AM) THE EXTENDED PROCESSING
ARCHITECTURE

The Zilog Extended Processing Architecture (EPA)
provides a flexible and modular approach to
expanding the capabilities of the Z280 MPU through
the use of coprocessors called Extended Processing
Units (EPUs). The Extended Processing Architec­
ture is available on the Z-BUS configurations
of the Z280 MPU, but not the Z80 Bus
configurations. Up to four EPUs can be connected
to a single Z280 MPU.

An Extended Processing Unit is a coprocessor that

can be used to execute complex, time-consuming
tasks in order to unburden the CPU. EPUs connect
directly to the Z-BUS; no extra external logic is
required to interface an EPU to a Z280-based
system (Figure 10-7). As the Z280 CPU fetches and
executes instructions, the EPU continuously
monitors the instruction stream on the bus. A
special group of instructions, called extended
instructions, are processed by EPUs. When the
Z280 CPU encounters an extended instruction, it
performs any specified data transactions, but
otherwise assumes that the instruction will be
recognized and handled by an EPU. (In systems
without EPUs, extended instructions can be used to
generate a trap condition.) Thus, when EPUs are
added to a system, the instruction set is expanded
to include the extended instructions applicable to
those EPUs, thereby boosting the processing power
of the whole system. The Z280 CPU and EPUs work
together like a single central processor; a
system with EPUs can be thought of as a system
whose central processor consists of 1 + N separate
devices, where N is the number of EPUs in the
system.

Figure 10-7. EPU Connection in Z280 MPU System • t: * *

The underlying philosophy of the Extended
Processing Architecture is that the CPU is an
instruction processor; that is, the CPU fetches
an instruction, fetches data associated with that
instruction, performs the specified operation, and
stores the result. Extending the number of
operations that can be performed does not affect
the instruction fetch and address calculation
portion of the CPU activity. The extended
instructions exploit this feature. The CPU is
responsible for fetching instructions, performing
address calculations, and generating the timing
signals for bus transactions; however, the actual
data manipulation for extended instructions is
handled by an EPU. Both the CPU and EPUs are,
therefore, controlled via a single instruction
stream, eliminating many significant system
software and bus contention problems that can
occur with other multiprocessing configurations.

10.5.1 Extended Instructions

Extended Processing Units connect directly to the
Z-BUS and continuously monitor the instruction
stream. When the template portion of an extended
instruction is fetched from memory, the
appropriate EPU will detect that the instruction
is meant for it and respond to the instruction.
The CPU is always responsible for fetching
instructions and delivering operands to the EPUs.
The EPUs recognize the extended instruction
templates and execute them, using data supplied
with the template and/or data already within
internal EPU registers.

••

There are four types of extended instructions in
the Z280 instruction set: data transfers from
memory to an EPU, data transfers from an EPU to
memory, data transfers from an EPU to the CPU's

10-6

f

accumulator register, and EPU internal
operations. Twenty-two instruction opcodes are
used to implement these operations. Each extended
instruction opcode includes two parts: a two- or
four-byte instruction opcode used by the Z280 CPU
to determine its activity and the address of the
memory operand, and a four-byte instruction
"template” that specifies the EPU activity. Six
operand addressing modes are supported by the
instructions that specify transfers between EPU
registers and main memory: Direct Address,
Indirect Register, Indexed, Stack Pointer
Relative, Program Counter Relative, and Base
Index. (See section 5.4.10 for a description of
the extended instructions.)

In addition to the hardware-implemented
capabilities of the EPA, there is an extended
instruction trap mechanism that permits software
simulation of EPU functions. The state of the EPU
Enable bit in the CPU’s Trap Control register

w indicates whether EPUs are present in the system
(see section 3.3.5). If the EPU Enable bit is
cleared to 0, indicating that there are not EPUs
in the system, the CPU will execute an Extended
Instruction trap if an extended instruction is
encountered in the instruction stream. The
service routine for this trap could perform a
software simulation of an EPU's functions. This
trap mechanism facilitates the design of systems
in which EPUs are not present but may be added
later. Initially, the "extended” function is

FETCH
NEXT

INSTRUCTION

CPU EPA TRAP
EXECUTES SERVICE

INSTRUCTION ROUTINE

\ 1

executed as the Extended Instruction trap service
routine; when EPUs are added to the system, the
trap routine is eliminated and the EPU Enable bit
is set to 1. This change would be transparent to
applications programs. (The Extended Instruction
trap is described in section 6.3.1.)

10.5.2 Extended Instruction Execution Sequence

The CPU and EPU instruction execution sequence is
diagrammed in Figure 10-8. When the CPU fetches
an extended instruction, the EPU Enable bit in the
Trap Control register is examined. If the EPU
Enable bit is a 0, an Extended Instruction trap is
executed. If the EPU Enable bit is a 1,
indicating that there is an EPU in the system,
then the CPU fetches the four-byte instruction
template from memory. The fetching of the
template is indicated by the ST3-ST0 status lines
from the CPU. EPUs must continuously monitor the
address/data bus and ST3-STQ status lines for its
templates. A 2-bit identification field in the
template can select one of up to four EPUs for
execution of a given extended instruction. If the
extended instruction calls for the transfer of
data between the CPU and EPU or between the EPU
and memory, the CPU generates the appropriate bus
transaction cycles. These transactions are
identified by unique encodings of the ST3-STQ
status lines. The EPU monitors the status and

M O NITO RS
Z-BUS FOR

EPU TEMPLATE

SET PAUSE
LINE AT CPU

UNTIL EPU
FREE

Figure 10-8. CPU-EPU Instruction Execution Sequence

timing signals output by the CPU to determine when
to participate in the data transaction; the EPU
supplies or captures the data when DS is active.
For transactions between an EPU and memory, the
CPU 3-states its address/data lines while DS is
active so that the EPU or memory can supply the
data. (See section 13.3.3 for a description of the
bus transaction timing.)

The number and type of bus cycles required to
fetch the extended instruction template depends on
whether the template is aligned on an even address

boundary. The four-byte long template can be
fetched with two word transactions if the template
begins on an even memory address or with one byte
and two word transactions if the template begins
at an odd memory address, as described in Table
10-1. (In the case of an odd starting address for
the template, the EPU captures only the upper byte
from the bus during the second word transaction.)
The template is always fetched from memory using
the CPU*s external bus interface, regardless of
the current state of the on-chip cache memory.

Table 10-1. Bus Transactions Involved in Fetch of Extended Instruction Template

Address at
Template Start Bus Cycle

Address
from Z280

>

Byte/Word ST3-ST0

Even 1 n Word 1101
- •• • . • ' 2 - n +2 ' Word ' 1100

Odd 1 n Byte 1101
2 n- f l Word 1100
3 n +3 Word 1100

If the extended instruction specifies an internal
EPU operation, the Z280 CPU can proceed to fetch
and execute subsequent instructions. Thus, the
CPU and EPUs may be processing in parallel. The
PAUSE signal is used to synchronize CPU-EPU
activity in the case of overlapping extended
instructions. If the CPU fetches another extended
instruction template intended for an EPU that is
still executing a previous instruction, the EPU
activates the PAUSE input to the CPU to halt
further CPU activity until the EPU can finish the
original operation. While PAUSE is asserted, all
CPU activity is suspended except responses to ̂
refresh requests, bus requests, and resets.

CPU activity following the fetch of the extended
instruction template is governed by the type of
extended instruction being processed. In the case
of an EPU internal operation, no further bus
transactions are required by the extended
instruction, so the CPU will proceed to fetch the
next instruction. However, the CPU will still
honor an active PAUSE input and suspend execution
until PAUSE is released.

In the case of an EPU-to-CPU transfer instruction,
the next non-refresh transaction following the
fetch of the template (and after an active PAUSE
signal is deasserted) will be the EPU-to-CPU bus
transaction. EPU-to-CPU bus transactions are

identified by a 1110 status code on the ST3-ST0
status lines and are word transactions. The
address emitted by the CPU during this cycle is
the memory address of the previous transaction
(that is, the address used during the last fetch
of the instruction template).

In the case of EPU-to-memory or memory-to-EPU
transfer instructions, the next one to sixteen
non-refresh transactions following the fetch of
the template (and after an active PAUSE signal is
deasserted) will be the appropriate data transfer
cycles. Up to 16 bytes of data may be transferred
as the result of a single extended instruction;
the number of data transfers to be performed is
encoded in the instruction template. The 1010
status code on the STj-STq status lines identifies
bus cycles that transfer data between an EPU and
memory. The EPU must supply the data for write
operations or capture the data for read operations
during each transaction, just as if it were part
of the CPU. The number and type of transactions
generated also depends on whether the starting
memory address of the data block to be moved is an
even-valued address, as defined in Table 10-2.
The case where only one byte is transferred is
degenerate and shown separately in Table 10-2 for
clarity. These transfers are always performed on
the Z280 MPU's external bus, regardless of the
current state of the on-chip cache memory.

10-8

Table 10-2. Sequence of Transactions for Data Transfers between an EPU and Memory

Starting Memory
Address

Number of
Bytes (n)

Byte/Word Status of
Transfers

Type of
Addresses

Total Number of
Transactions

Even Even word, word....word All even n/2

Even Odd word, word....word, byte All even (n +1)/2

Even One byte Even 1

Odd Even byte, word....word, byte First odd,
others even

(n +2)/2

Odd Odd byte, word,....word, word First odd,
others even

(n +1)/2

Odd One byte Odd 1

Chapter 11
Reset

UMlWWHMfcWWMMg

Hardware resets are asserted by an active RESET
input and place the Z280 MPU in a known state.
Optionally, the Bus Timing and Initialization reg­
ister can be initialized to a system specifiable
value during a reset. The RESET input is
internally synchronized to the clock and then
sampled at the end of every processor clock
cycle. When an active RESET line is detected, the
current bus transaction is allowed to be completed
before starting the reset process. A reset
overrides all other operations, including
interrupts, traps, and bus requests. A hardware
reset must be used to initialize the Z280 MPU as *
part of the power-up sequence.

The RESET input must be asserted for a minimum of
128 processor clock cycles. Within this time the
Z280 MPU lines assume their reset values: the
address and address/data lines are 3-stated and
all control lines are forced High. While RESET is
asserted, the clock output line (CLK) is the proc­
essor clock frequency divided by four.

When RESET is sampled high (deasserted), the state of the
WAIT input is sampled. If WAIT is asserted, the contents
of the ADq -AD^ lines are sampled on the falling edge of
the processor clock and loaded into the Bus Timing and
Initialization register; if this method of initialization
is chosen, AD^ must be a 1 and AD^ must be a 0 when the
bus is sampled, and the state of the AD^ line determines
whether the bootstrap mode option is selected. WAIT must
be asserted for at least two processor clock cycles after
RESET is deasserted in order for the Bus Timing and
Initialization register, thereby specifying a bus clock
frequency of one-half the processor clock, no automatic
wait states when accessing the lower 8M bytes of memory,
and disabling the multiprocessor mode of operation.

Table 11-1 delineates the effect of a reset on
other CPU registers. A reset places the CPU in

'interrupt mode 0; thus, the IM field in the
Interrupt Status register will be a 0. The
Interrupt Vector Enable bits in the Interrupt
Status register also are cleared to 0 by a reset,
and the Interrupt Pending bits will reflect the
current status of the interrupt requests. All
other CPU and MMU registers, including the
remaining registers in the CPU register file, the
MMU page descriptor registers, and the
Interrupt/Trap Vector Table Pointer are unaffected
by a reset.

The effect of a reset on the on-chip peripherals*
programmable registers is shown in Table 11-2.
The on-chip counter/timers are always disabled by
a reset. The on-chip DMA channels and UART are
also disabled by a reset, unless bootstrap mode is
selected (see Section 9.7). The counter/timers*
Time Constant and Count-Time registers are
unaffected by a reset. The DMA channels*
Destination Address, Source Address, and Count
registers also are unaffected by a reset, except
for DMA Channel 0's Destination Address and Count
registers.

In a multiprocessing system employing multiple
Z280 MPUs with a shared bus, the internal
processor clocks for the Z280 MPUs need to be
synchronized. The processor clock is generated by
dividing the XTAL1 input by two. The falling edge
of RESET is used internally to synchronize the
processor clock, and can be used to synchronize
processor clocks in a multiprocessing system. If
all the Z280 MPUs in the system have identical
XTAL1 and RESEI input signals, their internal
processor clocks will be initialized in the same
manner by a reset.

If an active bus request is detected on the rising
edge of RESET, the Z280 MPU grants the bus before
fetching the first instruction from location 0 .
Thus, an external DMA device can initialize RAM
memory before execution begins. If bus request is
not asserted, the CPU begins execution with a
fetch from location 0 unless bootstrap mode is in
effect.

11-1

Table 11-1. Effect of a Reset on Z280 MPU and M M U Registers

Register
Value Loaded on Reset

(Hexadecimal) Com m ents

Program Counter 0000 •

System Stack Pointer 0000

I 00

R 00

Master Status 0000 System mode, Single-Step disabled, Breakpoint-on-Halt
disabled
All maskable interrupts disabled

Bus Timing and Control 30 No automatic wait states for I/O, upper 8M bytes of
memory, or interrupt acknowledges

Bus Timing and Initialization 80 CLK output 2 x processor clock period, no automatic wait
states for lower 8M bytes of memory, bootstrap mode
disabled

I/O Page 00 I/O Page 0 in use

Cache Control 20 Cache enabled for instructions
All valid bits cleared to 0
Burst mode disabled

Trap Control 00 EPA trap disabled, I/O not privileged

System Stack Limit 0000 System Stack Overflow Warning trap disabled

Local Address 00 All memory transactions are made to local bus

Interrupt Status OOxx Interrupt mode 0, nonvectored interrupts, current state of
interrupt requests (indicated by xx)

Interrupl/Trap Vector Table Pointer Unaffected

CPU Registers AF, BC, DE, HL, IX, IY,
AF', BC', DE', HL' • . Unaffected • . - . *. • <. . - .

User Stack Pointer U naffected

MMU Master Control 0000 MMU disabled

MMU Page Descriptor Register, Page
Descriptor Register Pointer U naffected

>

11-2

Table 11-2. Effect of a Reset on Z280 On-Chip Peripheral Registers

Value Loaded on Reset •

Register (Hexadecimal) Com m ents

Refresh 88 Refresh enabled, rate = 32

Counter/Timers:
Configuration 00 Timer mode, single-cycle mode
Command/Status 00 Timer disabled

DMA Channels:
Master Control 0000* No DMA linking, EOP disabled, Software Ready disabled
DMAO Transaction Descriptor 0100* DMAO disabled, continuous mode
DMA1/2/3 Transaction Descriptor — EN, IE, TC, and EPS fields cleared, other fields unaffected

♦

DMAO Destination Address 000000
DMAO Count 0100

UART:
Configuration 00* 5 bits/character, parity disabled, external clock, x 1 clock

rate, loop back disabled
Transmitter Control/Status 01 .. Transmitter disabled, transmit buffer empty
Receiver Control/Status 00* Receiver disabled

* Unless bootstrap mode is selected.

11-3

Chapter 12.
Z280 Bus External Interface

12.1 INTRODUCTION

Baa

The Z280 MPU is typically only one component in a
system that may include memory, peripherals, slave
processors, coprocessors, and other CPUs, all
connected via a system bus. Two different
component-interconnect bus schemes are available
with the Z280 MPU: the Z80 Bus and the Z-BU5.

This chapter describes the external manifestations
(that is, the activity on the pins) that result
from CPU or on-chip peripheral activity for the
Z80 Bus configurations of the Z280 MPU. (The
Z-BUS external interface is described in Chapter
13.) Since the pins are connected to the system
bus, most of this discussion will center on the
bus and bus operations.

The condition of the 0P1 signal pin determines the
configuration of the bus interface for the Z280
MPU; the Z80 Bus configuration is selected by
applying a logical 0 (ground) level on the OPT
pin. *

> The Z80 Bus on the Z280 MPU includes a 24-bit
address bus, 8-bit data bus, and associated status
and control signals. The data bus is multiplexed
with the low-order 8 bits of the address bus.
Figure 12-1a shows the pin functions for the
Z80 Bus configuration of the Z280 MPU. The
Z80 bus described here is compatible with Zilog's
Z8400 and Z8500 families of peripheral devices.

BUS CONTROL {

INTERRUPTS

ON-CHIP
PERIPHERALS

3
3

4
2

ADDRESS I
DATA

2 4

m m t t m u
A.

BUSREO
BUSACK At

Rff?

Aio
A11

in t a/ eop A12

INTb Aij

INTC A|*

zsso Alt
_ ^ M PURXD Alt

TxD Air

ctin /gaCk *

Ait
Ait

CTIO/GREO * * Ajo
..- * » r" 4 - • A21

ROY A22

DMASTB

4 ? 4 -

A23

^ GNO v.
*MumpUx«d with CTINq
* ‘ Multlpttxtd with CTIOq

BUS TIM IN G
AND STATUS

CPU
CONTROL

^
/ 9 8 7 6 5 4 3 2 1 66 67 66 65 64 63 62 61

HALT 10 60
DMASTBo 11 59

WR 12 58
DMASTB 1 13 57

RFRSH 14 56
IORQ 15 55

OE 16 54
IE 17 53

ADDRESS * 5V 16 Z 2 8 0
M PU

52
+ 5V 19 ■ 51

CTIOt 20 50
Ml 21 49

MREO 22 48
CTIOj 23 47

RO 24 46
CTINj 25 45

INTC 26 44
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

S’ ^ 4 * *

AD*

A21
ROY3
AD*
RDYt
ROY0
AD*
GNO
RESERVED
GNO
XTALI
XTALO
RxO
CLK
1X0

Aao
AOa

Figure 12-1a. Pin Functions Figure 12-1b. Pin Assignments

Figure 12-1. Z80 Bus Configuration (Input OPT tied to GND)

12-1

Two kinds of operations can occur on the Z80 Bus:
transactions arid requests. At any given time only
one device (either the CPU or a bus requestor such
as a DMA channel) can be in control of the bus;
this device is called the bus master. Trans­
actions are always initiated by the bus master and
are responded to by some other device on the bus.
Only one transaction can proceed at a time.
Requests can be initiated by a device that does
not have control of the bus.

Seven types of transactions can occur on the
Z80 Bus, as described below:

Memory transaction. CPU- or DMA-controlled
transfer of data to or from a memory location.

RETI transaction. CPU-initiated transaction used
in conjunction with the interrupt logic of Z8400
family peripherals.

Halt transaction. Transaction indicating that the
CPU is entering the Halt state due to the
execution of a HALT instruction or a fatal
sequence of traps.

Refresh. Transaction that refreshes dynamic
memory; refresh transactions do not involve a
transfer of data.

I/O transaction. CPU- or DMA-controlled transfer
of data to or from a peripheral device.

Interrupt Acknowledge. CPU-controlled transaction
used to acknowledge an interrupt and read data
from the interrupting device. . 4...,.

DMA Flyby transaction. A DMA-controlled trans­
action that transfers data between a memory
location and a peripheral device.

Two types of requests can occur on the Z80 Bus, as
described below:

Interrupt request. A request initiated by a
peripheral device to gain the attention of the
CPU.

Bus request. A request by an external device
(typically a DMA channel) to gain control of the
bus in order to initiate transactions.

A request is answered by the CPU according to its
type: for interrupt requests, an interrupt
acknowledge sequence is generated; for bus
requests, the CPU relinquishes the bus and
activates an acknowledge signal.

12.2 BUS OPERATIONS

lhe pin functions for the Z80 Bus configuration
of the Z280 MPIJ are illustrated in Figure
12-1 a. The pin assignments are shown in Figure
12-1b. A functional description of each pin is
given below:

A8-A 23. Address (output, active High, 3-state). These
address lines carry I/O addresses and memory addresses
during bus transactions.

AD0-AD7. Address/Data (bidirectional, active High, 3-state).
These eight multiplexed Data and Address lines carry I/O
addresses, memory addresses, and data during bus
transactions.

AS. Address Strobe (output, active Low, 3-state). The rising
edge of AS indicates the beginning of a transaction and
shows that the address is valid.

BUSACK. Bus Acknowledge (output, active Low). A Low on
this line indicates that the CPU has relinquished control of
the bus in response to a bus request.

BUSREQ. Bus Request (input, active Low). A Low on this
line indicates that an external bus requester has obtained or
is trying to obtain control of the bus.

CLK. Clock Output (output). The frequency of the processor
timing clock is derived from the oscillator input (external
oscillator) or crystal frequency (internal oscillator) by
dividing the crystal or external oscillator input by two. The
processor clock is further divided by one, two, or four (as
programmed) and then output on this line.

CTIN. Counter/Timer Input (input, active High). These lines
receive signals from external devices for the counter/timers.

C TIO . Counter/Timer I/O (bidirectional, active High,
3-state). These I/O lines transfer signals between the
counter/timers and external devices.

DMASTB. DMA Flyby Strobe (output, active Low). These
lines select peripheral devices for flyby transfers.

EOP. End of Process (input, active Low). An external source
can terminate a DMA operation in progress by driving EOP
Low. EOP always applies to the active channel; if no channel
is active, EOP is ignored.

GACK. Global Acknowledge (input, active Low). A Low on
this line indicates the CPU has been granted control of a
global bus.

GREQ. Global Request (output, active Low, 3-state). A Low
on this line indicates the CPU has obtained or is trying to
obtain control of a global bus.

GND. Ground. Ground reference.

HALT. Halt (output, active Low, 3-state). This signal indicates
that the CPU is in the Halt state and is awaiting an interrupt
before operation can resume.

12.3 PIN DESCRIPTIONS

1 2 - 2

IE. Input Enable (output, active Low, 3 -state). A Low on this
line indicates that the direction of transfer on the
Address/Data lines is toward the MPU.

INT. Maskable Interrupts (input, active Low). A Low on these
lines requests an interrupt.

«

IORQ. Input/Output Request (output, active Low, 3-state).
This signal indicates that AD0 -AD7 and A w &23 of the
address bus hold a valid I/O address for an I/O read or write
operation. An IORQ signal is also generated with an
M1 signal when an interrupt is being acknowledged, to
indicate that an interrupt response vector can be placed on
the data bus.

M1. Machine Cycle One (output, active Low, 3-state). This
signal indicates that the current transaction is the opcode
fetch cycle of a RETI instruction execution. M 1 also occurs
with IORQ to indicate an interrupt acknowledge cycle.

MREQ. Memory Request (output, active Low, 3-state). This
signal indicates that the address bus holds a valid address
for a memory read or write operation.

NMI. Nonmaskable Interrupt (input, falling-edge activated).
A High-to-Low transition on this line requests a nonmaskable
interrupt.

OE. Output Enable (output, active Low, 3-state). A Low on
this line indicates that the direction of transfer on the
Address/Data lines is away from the MPU.

OPT. Bus Option (input). This signal establishes the bus
option during reset.

OPT Bus Interface

0 Z80 Bus, 8 -bit
1 Z-BUS, 16-bit

PAUSE. MPU Pause (input, active Low). While this line is
Low the MPU refrains from transferring data to or from an
Extended Processing Unit in the system or from beginning
the execution of an instruction.

RD. Read (output, active Low, 3-state). This signal indicates
that the CPU or DMA peripheral is reading data from
memory or an I/O device.

RDY. DMA Ready (input, active Low). These lines are
monitored by the DMAs to determine when a peripheral
device associated with a DMA port is ready for a read or
write operation. When a DMA port is enabled to operate, its
Ready line indirectly controls DMA activity; the manner in
which DMA activity is controlled by the line varies with the
operating mode (single-transaction, burst, or continuous).

RESET. Reset (input, active Low). A Low on this line resets
the CPU and on-chip peripherals.

RFSH. Refresh (output, active Low, 3-state). This signal
indicates that the lower ten bits of the Address bus contain a
refresh address for dynamic memories and the current
MREQ signal should be used to perform a refresh to all
dynamic memories.

RxD. UART Receive (input, active High). This line receives
serial data at standard TTL levels.

TxD. UART Transmit (output, active High). This line transmits
serial data at standard TTL levels.

WAIT. Wait (input, active Low). A Low on this line indicates
that the responding device needs more time to complete a
transaction.

WR. Write (output, active Low, 3-state). This signal indicates
that the bus holds valid data to be stored at the addressed
memory or I/O location.

XTALI. Clock/Crystal Input (time-base input). Connects a
parallel-resonant crystal or an external single-phase clock to
the on-chip oscillator.

XTALO. Crystal Output (time-base output). Connects a
parallel-resonant crystal to the on-chip oscillator.

+ 5V. Power Supply Voltage. (+ 5 nominal).

>

12-3

Four Z280 CPU control registers specify certain
characteristics of the Z280 MPU's external
interface and determine bus timing: the Bus
liming and Initialization register, Bus Timing and
Control register, Local Address register, and
Cache Control register.

Bus timing is determined by the frequency of the
Z280 MPU's external clock source or crystal and’
the contents of the Bus Timing and Initialization
register, which receives its initial values as
part of the reset process (see section 3.2.1).
The frequency of the processor clock is one-half
of the frequency of the external clock source or
crystal. The processor clock can be further
divided by a factor of 1, 2, or 4 to provide the
bus timing clock, as specified by the contents of
the Clock Scaling field in the Bus Timing and
Initialization register. The bus timing clock is
output by the MPU as the CLK signal. In the
logical timing diagrams that follow, signal
transitions on the bus are shown in relation to
the bus clock, CLK.

The number of automatic wait states included in a
given transaction is determined by the contents of
the Bus Timing and Initialization and Bus Timing
and Control registers. The physical memory
address space is divided into two sections based
on the most significant physical address bit,
A23. IJp to three automatic wait states can be
added to transactions to the lower half of memory
(addresses where A23 = 0); similarly, up to three
automatic wait states can be added to transactions
to the upper half of memory (A23 = 1), to all I/O
transactions, and to interrupt acknowledge
transactions.

The state of the Multiprocessor Configuration
Enable bit in the Bus Timing and Initialization
register and the contents of the Local Address
register determine which memory transactions
require use of a global bus, as described in
section 10.3. The contents of the Cache Control
register and the state of the address tags and
valid bits in the cache memory determine which
transactions employ the cache memory and which
transactions use the external bus interface, as
described in Chapter 8.

12.4 BUS CONFIGURATION AND IIMING

At any given time, one device (either the CPU or a
bus requester) has control of the bus and is known
as the bus master. A transaction is initiated by
the bus master and is responded to by some other
device on the bus. Information transfers (both
instructions and data) to and from the Z280 MPU
are accomplished through the use of transactions.
All transactions start when Address Strobe (AS) is
driven low and then raised high.

if the transaction requires an address, the
address is valid on the rising edge of AS. AS can
be used to latch Z280 MPU addresses to de­
multiplex the Z280 Address/Data lines. If an
address is generated, the Output Enable (OE) line
is activated coincident with AS assertion.

The Read (RD) and Write (WR) lines are used to
time the data transfers. For transactions that do
not involve the transfer of data (Refresh and
Halt transactions), neither RD nor WR is
activated. For write operations, a low on WR
indicates that valid data from the bus master is
on the AD lines. The Output Enable line continues
to be asserted until WR is deasserted. For read
operations, the bus master drives the RD line low
when the addressed device is to put its data on
the bus. Coincident with the assertion of RD, the
AD lines are 3 stated by the bus master and OE is
deasserted; Input Enable (IE) is asserted one-half
clock cycle later. The bus master samples the
data on the falling clock edge just before
deasserting RD and IE. The rising edge of RD or
WR marks the end of the transaction.

12.5 TRANSACTIONS

The Z280 MPU's WAIT input provides a mechanism
whereby the timing of a particular transaction can
be extended to accommodate a memory or peripheral
device with a long access time. The WAIT line is
sampled on the falling clock edge when data is to
be sampled (i.e. just before RD or WR rises)
during a transaction. If the WAIT line is low,
another bus clock cycle is added to the
transaction before data is sampled (RD or WR
rises). In this added cycle, and all subsequent
cycles added due to WAIT being low, the WAIT line
is sampled on the falling edge of the clock and,
if it is low, another cycle is added to the
transaction before data is sampled. In this way,
the transaction can be extended by external logic
to an arbitrary length, in increments of one bus
clock cycle.

12-4

The WAII input is synchronous, and must meet the
specified setup and hold times in order for the
Z280 MPU to function correctly. I his requires
asynchronously generated WAIT signals to be
synchronized to the CLK output before they are
input into the Z280 MPU. Automatic wait states
can also be generated by programming the Bus
Timing and Control register and Bus Timing and
Initialization register; these are inserted in
the transaction before the external WAIT signal is
sampled.

12,5.1 Memory Transactions

Memory transactions move instructions or data to
or from memory when a bus master makes a memory
access. Thus, they are generated during program
execution to fetch instructions from memory and to
fetch and store memory data. They are also
generated to store old program status and fetch
new program status during interrupt and trap
handling, and to transfer information during DMA-
controlled memory accesses. A memory transaction
is three bus cycles long unless extended with
hardware- and/or software-generated wait states,
as explained previously.

Memory transaction timing is illustrated in
figures 12-2 and 12-3. During the first bus cycle,

AS is asserted to indicate the beginning of a
transact ion; Output Enable (OE) is also asserted
at this time. The MREQ signal goes active during
the second half of this bus cycle, which indicates
a memory transaction. for a Read operation
(Figure 12-2), RD is activated during the first
half of the second bus cycle, after the bus master
has 3-stated the AD lines; OE is deasserted at
the beginning of the second cycle and Input Enable
(IE) is asserted during the second half of the
second cycle. The bus master samples the infor­
mation returned from memory on the Address/Data
bus on the falling edge of the clock during the
third bus cycle; after the data is sampled, RD,
MREQ, and IE are deasserted. For a Write oper­
ation (Figure 12-3), the WR line is asserted
during the second half of the second cycle, after
the bus master has placed the data to be written
on the AD lines, and OE stays active throughout
the transaction.

The WAIT input is also sampled on the falling edge
of the clock durinq the third clock cycle; if
WAIT is low, another bus clock cycle is added
before samplinq the data. Wait states can also be
added throuqh proqramming of the Bus Timinq and
Initialization reqister and Bus Timinq and Control
reqister. For example, Fiqures 12-4, 12-5, and
12-6 illustrate memory transactions with one wait
state.

CLK

h— Ti—4*
j L_r

T2 ---------- ------------------ T j ----------- *►}i_ r i_ r
AD0-AD7

A«-A23

AS

MREQ

RD

WAIT

________ 1r™___ \ / v r i ’ \

________ t___________

\

ADDRESS

V
/
/

7“T

X

OE A /
i i i v_________/r

Figure 12-2. Memory Read Timing

12-5

I -
CLK

AD0-AD7

---------- T i ------------- -------------------T j ------
— H-------------- T j - HT I I I L r

i , I i

ADDRESS Y DATA VALIDr
Al-Aaa

AS

AAREQ

K
ADDRESS

WR \

X

/
/

WAIT

OE

IE HIGH

7 ^

Figure 12-3. Memory Write Timing

CLK

Ti * ■■ Tj 1 j ^ T*

J I__I 1__1 l
4 — t*— H~ 1_ r

Figure 12-4. Memory Read Timing with One External Wait State

12-6

b Tt

CLK
■ ■ ■ ■ ■ ■ ■ l

« T ^ ^ T w.^ iw m ^ ^

f l f r

Figure 12-5. Memory Write Timing with One External Wait State

T,

CLK l
T•w

J
t 3

J
H
r

Figure 12-6. Memory Read Timing with One Internal Wait State

12-7

12-8

12.5.2 RETI Transactions

RETI transactions (Figure 12-7) are similar to
memory read transactions with two exceptions: M1
is asserted throughout each read transaction,
fallinq early in the First bus cycle, and MREQ,
M1, RD, and IF are deasserted on the risinq edqe
of the clock following the third cycle. Each of
the read transactions is followed by a minimum of
three bus cycles of inactivity. These trans­
actions are invoked whenever an RE 11 instruction
is encountered in the instruction stream; they
are used to re-fetch the instruction from external
memory so that interrupt loqic within Z8400 family
peripherals that monitor the bus for this
instruction will function correctly.

12.5.3 Halt and Refresh Transactions

There are two types of bus transactions that do
not transfer data: Halt and Refresh transactions.
These transactions are similar to memory
transactions, except that RD and WR remain high,
the WAIT input is not sampled, and no data is
transferred.

Halt transactions (Figure 12-8) are identical to
memory read transactions except that HALT is
asserted throughout the transaction, failing
during the second half of the first bus cycle, and
remains asserted after the transaction is
completed. This transaction is invoked when a
HALT instruction is executed or a fatal seguence
of traps occurs. For Halt transactions generated
by the HALT instruction, once the Halt transaction
is completed, all subsequent CPU activity is
suspended until an active interrupt request or
reset is detected. After Halt transactions
generated due to a fatal condition, all CPU
activity is suspended until an active reset is
detected (see section 6 .6). The HALT line remains
asserted until the interrupt request is
acknowledged or the reset is received. Refresh
transactions or DMA transfers may occur while HALT
is asserted; also, the bus can be granted. The
address put out during the address phase of the
Halt transaction is the address of the Halt
instruction or the instruction that initiated the
fatal sequence of traps.

cue

----------- T i— ------------ T2------------------------------ Ta ■ s»|

AD0-AD7

AB-A23

MREQ

HD AND W R

H a l t

ADDRESS*

-

w
■ i

HIGH

HIGH

'

•

_____J
Y_ r

Address of HALT Instruction.

Figure 12-8. Halt Timing

12-9

A memory refresh transaction (Figure 12-9) is
generated by the Z280 MPU refresh mechanism and
can occur immediately after the final clock cycle
of any other transaction. The memory refresh
counter’s 10-bit address is output on ADQ-AD7, Ag,
and A9 when AS is asserted; the remaining address
lines are undefined. The RFSH line is activated
concurrent with MREQ. This transaction can be
used to generate refreshes for dynamic RAMs.
Refreshes may occur while the CPU is in the Halt
state.

12,5,4 I/O Transactions

I/O transactions move data to or from peripherals
and are generated during the execution of I/O
instructions or during DMA-controlled transfers.
I/O transactions to devices in I/O pages FE^ and
FF̂ j do not generate external bus transactions.

Figures 12-10 and 12-11 illustrate 1/0 transaction
timing. I/O transactions are four clock cycles
long at a minimum, and, like memory transactions,
may be lengthened by the addition of wait cycles.
I/O transaction timing is similar to memory
transaction timing with one automatic wait state.

The IORQ line indicates that an I/O transaction is
taking place. The 1/0 address is found on ADQ-AD7
and Ag-A23 when AS rises. For read operations, RD
and IE are asserted during the second clock cycle,
and input data from the peripheral is sampled by
the bus master during the fourth cycle (unless
additional wait states are inserted in the
transaction). For write operations, WR is
asserted during the second cycle with 0E remaining
asserted; output data to the peripheral is placed
on the bus at this time.

k
CLK J 1 f l

4- *1

> , „
** **

*10 toast significant bits are Refresh address, ths vest are undefined.

Figure 12-9. Memory Refresh Timing

h TW

CLK J l J l l
■ ■ M M

\ * * i • • ^ ^ * * . • *

Figure 12-10. I/O Read Timing

h
CLK

--------T ,-------------►!«*■

_ r n _ _ r
TW -t*

J r

Figure 12-11. I/O Write Timing

12-11

12.5.5 Interrupt Acknowledge Transactions

Interrupt acknowledge transactions acknowledge an
interrupt and read information from the device
that generated the interrupt. These transactions
are generated automatically by the CPU when an
interrupt request is detected.

Interrupt acknowledge transactions are five cycles
long at a minimum, with two automatic wait cycles
(Figure 12-12). The wait cycles are used to give
the interrupt priority daisy chain (or other
priority resolution devices) time to settle before
the identifier or vector is read. Additional
automatic wait states can be generated by
programming the Bus Timing and Control register.

The interrupt acknowledge transaction is indicated
by an M1 assertion without MREQ during the first
cycle. The AD^ and AD2 address lines indicate the
type of interrupt being acknowledged when AS is
asserted (see Table 6-4); the remaining address
lines are undefined. The IORQ signal becomes
active during the third cycle to indicate that the
interrupting device can place an 8-bit identifier
or vector on the bus. It is captured from the AD
lines on the falling clock edge before 10RQ is
raised high.

There are two places where the WAIl line is
sampled and, thus, where wait states can be
inserted by external circuitry. The first, during
T2, serves to delay the falling edge of IORQ to

Tlast

CLK _I 1

fUT

Tw TW H*
I f J J l

■ ■ M M

____ I_____J_____ l_____!_____ I
/

J

Y U N D E FIN E D * K________________ / DATA \ _______ :

J) J
r

HALT

A D 0-A D 7

A8-A23

AS

X U N D E F IN E D

.

a__r
* *1: ’ > • f - «

~ \

H I QH

« 1 * V ___________________________________/

m reQ

IORQ

WAIT / \

RD HU

■*

OE A ____________________ /
■

i t V J —
_____________/

* A D 1 and A D 2 indicate type of interrupt being acknow ledged.

Figure 12-12. Interrupt Acknowledge Sequence

12-12

allow the daisy chain a longer time to settle;
the second, during 13, serves to delay the point
at which the identifier or vector is read.

Software-generated wait states can also be added
at either time via programming of the DC and l/G
fields in the Bus liming and Control register. As
always, software-generated wait states are
inserted into the transaction before the external
WAIT signal is sampled.

12.5.6 DMA Flyby Transactions

On-chip DMA channels 0 and 1 can transfer data
between memory and peripheral devices using flyby
type transfers; external DMA controllers in Z280
MRU systems may also have this capability. The
timing of flyby transactions is identical to
memory transaction timing, with the exception that
the DMA Flyby Strobe (DMASIB) signal is activated;
the DMASTB signal is used to select the partici­
pating I/O device that must capture or supply the
data during the memory access transaction.

Flyby transactions controlled by the on-chip DMA
channels always include one automatic wait state
(Figures 12-13 and 12-14). As with all memory

transactions, other hardware- and software­
generated wait states can be added to the trans­
action. The external WAIT signal is sampled at
two different times: during the automatic wait
state and during l3.

For flyby transactions that read from memor> and
write to a peripheral (Figure 12-13), DMASIB
is asserted during the automatic wait state and
any subsequent wait states added by an active WAIT
signal sampled during the automatic wait state.
Thus, if the WAIT input is asserted during the
automatic wait state, the additional wait states
extend the width of the DMASTB pulse. Wait states
added via the assertion of WAIT during T3 (after
DMASTB is deasserted) stretch the RD signal
without affecting DMAS IB.

For flyby transactions that read from a peripheral
and write to memory (Figure 12-14), DMASI8 is
asserted at the beginning of T2 and remains
asserted until the second half of T3. The WR
signal is asserted only during the automatic wait
state and any subsequent wait states added by
sampling WAIT during the automatic wait state.
Wait states added via the assertion of WAII during
T3 stretch the DMASTB signal without affecting WR.

k T, -b T,
- b ~b T, H

12-13

------------T ,-------------► ------------ T ,-------------►!-*-----Tw----- .-J-*----- T ,----- ►!

cuij i__i i__i i__i i__r

Figure 12-14. On-Chip DMA Channel Flyby Memory Write Transaction

12.6 REQUESTS

The Z280 MPU supports three types of request
signals: interrupt requests, local bus requests,
and global bus requests. A request is answered
according to its type. Interrupt requests are
generated by peripheral devices; the Z280 MPU
responds with an interrupt Acknowledge trans­
action. Local bus requests are initiated by an
external potential bus master; the Z280 MPU
responds by relinquishing the bus and generating
an active Bus Acknowledge signal. Global bus
requests are generated by the Z280 CPU or an
on-chip DMA channel to access a global bus; the
Z280 MPU receives a Global Bus Acknowledge signal
in response to the request.

12.6.1 Interrupt Requests

The Z280 CPU supports two types of interrupts,
maskable 1NT and nonmaskable (NMI). The interrupt
request line from a device capable of generating
interrupts can be tied to the Z280 MPUfs INT or

NMI inputs; several devices can be connected to
one interrupt request input, with interrupt
priorities established via external logic or a
priority daisy chain. However, all Z8400 family
peripherals in a Z280-based system will respond to
the RETI transaction. Therefore, either all Z8400
family peripherals should use the same interrupt
request line or, alternatively, no nesting of
interrupts should be allowed among the Z8400
peripherals using different interrupt request
1ines.

Nonmaskable interrupt requests are edge-triggered,
but maskable interrupts are level-triggered. Any
high-to-luw transition on the NMI input is
asynchronously edge-detected, and an internal NMI
latch is set. At the beginning of the last clock
cycle during execution of an instruction, the
maskable interrupt inputs are sampled along with
the state of the internal NMI latch. If an
interrupt is detected, and that interrupt is
enabled in the Master Status register, interrupt
processing proceeds in accordance with the current
interrupt mode, as described in Chapter 6.

12-14
(

12.6.2 Local Bus Requests

To generate transactions on the bus, a potential
bus master (such as a DMA controller) must gain
control of the bus by making a bus request. A bus
request is initiated by pulling BUSREQ low; the
Z280 MPU responds by 3-stating its address, data,
bus control, and bus status outputs and asserting
an active BUSACK, as described in section 10.2.
The CPU regains control of the bus after BUSREQ
rises. The on-chip DMA channels have higher
priority than external devices requesting the bus
via BUSREQ.

12.6.3 Global Bus Requests

If the multiprocessor mode is specified in the Bus
Timing and Initialization register, then the
contents of the Local Address register determine
the range of memory addresses dedicated to the

shared global bus. Before accessing an address on
the global bus, the Z280 MPU must issue a Global
Bus Request (GREQ) and receive an active Global
Bus Acknowledge (GACK) signal, as described in
Section 10.3.

Figure 12-15 illustrates the timing of the global
bus cequest/acknowledge sequence. When the Z280
MPU needs to access a location on the global bus,
GREQ is asserted in order to request use of the
global bus. GACK is then sampled on each
successive rising edge of the clock; when GACK
becomes active (and if BUSREQ is not asserted),
the memory transaction proceeds as described in
section 12.5.1. GREQ is deasserted in the bus
clock cycle immediately following the end of the
memory transaction (except when executing the Test
and Set instruction, where both the memory read
and write operations are executed before
deasserting GREQ).

f* h - T, -f

Figure 12-15. Multiprocessor Mode Timing

1 2 - 1 5

Chapter 13.
Z-BUS External Interface

13.1 INTRODUCTION

The Z280 MPU is typically only one component in a
system that may include memory, peripherals, slave
processors, coprocessors, and other CPUs, all
connected via a system bus. Two different
component-interconnect bus schemes are available
with the Z280 MPU: the Z80 Bus and the Z-BUS.

This chapter describes the external manifestations
(that is, the activity on the pins) that result
from CPU or on-chip peripheral activity for the
Z-BUS configurations of the Z280 MPU. (The
Z8Q Bus external interface is described in Chapter
12.) Since the pins are connected to the system
bus, most of this discussion will center on the
bus and bus operations.

The condition of the OPT pin determines the
configuration of the bus interface for the Z280
MPU; the Z-BUS configuration is selected either by

applying a logical 1 (VC(>) level on the OP I pin
or by leaving the OPT pin disconnected.

The Z-BUS on the Z280 MPU includes a 24-bit
address bus, 16-bit data bus, and associated
status and control signals. The data bus is
multiplexed with the low-order 16 bits of the
address bus. The Z-BUS configuration of the Z280
MPU supports the use of Extended Processing Units
and burst-mode memories. Figure 13-1 shows the
pin functions and pin assignments for the Z-BUS
configuration of the Z280 MPU. The Z-BUS
described here is compatible with Zilog's Z8000
family of peripheral devices. Other Z-BUS
compatible components include the Z8000 family of
CPUs. Refer to Zilog's Component Data Book for a
complete description of the Z-BUS Component
Interconnect convention.

A D D R E S S

2 4

y -' yO y> y> *0V V 'V * y '' y '' y * y '* y ^ V 'y 0'

ADt
Aji
ROY 3

a d 5
ROY,

RDYo
a o4
GNO
RESERVED
GNO
XTALI

XTALO

RxD

CLK
IkD

Ajo
a d 3

Figure 13-1a.

Figure 13*1.

Pin Functions Figure 13-1b. Pin Assignments
s

Z-BUS Configuration (Input OPT tied to + 5V or not connected)

*

13-1

13.2 BUS OPERATIONS 13.3 PIN DESCRIPTIONS

Two kinds of operations can occur on the Z-BUS:
transactions and requests. At any given time only
one device (either the CPU or a bus requestor such
as a DMA channel) can be in control of the bus;
this device is called the bus master. Trans­
actions are always initiated by the bus master and
are responded to by some other device on the bus.
Only one transaction can proceed at a time.
Requests can be initiated by a device that does
not have control of the bus.

Seven types of transactions can occur on the
Z-BUS, as described below:

Menory transaction. CPU- or DMA-controlled
transfer of data to or from a memory location.

Halt transaction. Transaction indicating that
the CPU is entering the Halt state due to
execution of a HALT instruction or a fatal
sequence of traps.

Refresh. Transaction that refreshes dynamic
memory; refresh transactions do not involve a
transfer of data.

I/O transaction. CPU- or DMA-controlled transfer
of data to or from a peripheral device.

Interrupt Acknowledge. CPU-controlled
transaction used to acknowledge an interrupt and
read data from the interrupting device.

EPU transaction. A transfer of data from an
Extended Processing Unit (EPU) to the CPU.

DMA Flyby transaction. A DMA-controlled
transaction that transfers data between a memory
location and a peripheral device.

Two types of requests can occur on the Z-BUS, as
described below:

Interrupt request. A request initiated by a
peripheral device to gain the attention of the
CPU.

Bus request. A request by an external device
(typically a DMA channel) to gain control of the
bus in order to initiate transactions.

A request is answered by the CPU according to its
type: for interrupt requests, an interrupt
acknowledge sequence is generated; for bus
requests, the CPU relinquishes the bus and
activates an acknowledge signal.

The pin functions and assignments for the Z-BUS
configuration of the Z280 MPU are illustrated in
Figure 13-1. A functional description of each pin
is given below:

A16-A23. Address (output, active High, 3-state). These
address lines carry I/O addresses and memory addresses
during bus transactions.

ADo'AD-15. Address/Data (bidirectional, active High,
3-state). These 16 multiplexed address and data lines carry
I/O addresses, memory addresses, and data during bus
transactions.

AS. Address Strobe (output, active Low, 3-state). The rising
edge of Address Strobe indicates the beginning^ of a
transaction and shows that the address, status, R/W, and
B/W signals are valid.

BUSACK. Bus Acknowledge (output, active Low). A Low on
this line indicates that the CPU has relinquished control of
the bus in response to a bus request.

BUSREQ. Bus Request (input, active Low). A Low on this
line indicates that an external bus requester has obtained or
is trying to obtain control of the bus.

B/W. ByteANord (output, Low = Word, 3-state). This signal
indicates whether a byte or a word of data is to be
transmitted during a transaction.

CLK. Clock Output (output). The frequency of the processor
timing clock is derived from the oscillator input (external
oscillator) or crystal frequency (internal oscillator) by
dividing the crystal or external oscillator input by two. The
processor clock is further divided by one, two, or four (as
programmed), and then output on this line.

CTIN. Counter/Timer Input (input, active High). These lines
receive signals from external devices for the counter/timers.

CTIO. Counter/Timer I/O (bidirectional, active High,
3-state). These I/O lines transfer signals between the
counter/timers and external devices.

DMASTB. DMA Flyby Strobe (output, active Low). These
lines select peripheral devices for DMA flyby transfers.

DS. Data Strobe (output, active Low, 3-state). This signal
provides timing for data movement to or from the bus
master.

EOP. End of Process (input, active Low). An external source
can terminate a DMA operation in progress by driving EOP
Low. EOP always applies to the active channel; if no channel
is active, EOP is ignored.

GACK. Global Acknowledge (input, active Low). A Low on
this line indicates the CPU has been granted control of a
global bus.

13-2

GREQ. Global Request (output, active Low, 3-state). A Low
on this line indicates the CPU has obtained or is trying to
obtain control of a global bus.

IE. Input Enable (output, active Low, 3-state). A Low on this
line indicates that the direction of transfer on the
Address/Data lines is toward the CPU.

INT. Maskable Interrupts (input, active Low). A Low on these
lines requests an interrupt.

NMI. Nonmaskable Interrupt (input, falling-edge activated).
A High-to Low transition on this line requests a nonmaskable
interrupt.

OE. Output Enable (output, active Low, 3-state). A Low on
this line indicates that the direction of transfer on the
Address/Data lines is away from the MPU.

enabled to operate, its Ready line indirectly controls DMA
activity; the manner in which DMA activity is controlled by
the line varies with the operating mode (single-transaction,
burst, or continuous).

RESET. Reset (input, active Low). A Low on this line resets
the CPU and on-chip peripherals.

R/W. Read/Write (output, Low = Write, 3-state). This signal
determines the direction of data transfer for memory, I/O, or
EPU transfer transactions.

RxD. UART Receive (input, active High). This line receives
serial data at standard TTL levels.

ST0-ST3. Status (output, active High, 3-state). These four
lines indicate the type of transaction occurring on the bus
and give additional information about the transaction.

OPT. Bus Option (input). This signal establishes the bus TxD. UART Transmit (output, active High). This line transmits
option during reset as follows: serial data at standard TTL levels.

1«

OPT Bus Interface

0
1

Z80-Bus, 8-bit ...-,.
Z-BUS, 16-bit

PAUSE. CPU Pause (input, active Low). While this line is Low
the CPU refrains from transferring data to or from an
Extended Processing Unit in the system or from beginning
the execution of an instruction.

RDY. DMA Ready (input, active Low). These lines are
monitored by the DMA channels to determine when a
peripheral device associated with a DMA channel is ready
for a read or write operation. When a DMA channel is

WAIT. Wait (input, active Low). A Low on this line indicates
that the responding device needs more time to complete a
transaction.

XTALI. Clock/Crystal Input (time-base input). Connects a
parallel-resonant crystal or an external single-phase clock to
the on-chip clock oscillator.

XTALO. Crystal Output (time-base output). Connects a
parallel-resonant crystal to the on-chip clock oscillator.

+ 5V. Power Supply Voltage. (+ 5 nominal).

GND. Ground. Ground reference.

13-3

13.4 BUS CONFIGURATION AND TIMING 13.5 TRANSACTIONS

Four Z280 CPU control registers specify certain
characteristics of the Z280 MPU's external
interface and determine bus timing: the 3us
Timing and Initialization register, Bus Timing and
Control register, Local Address register, and
Cache Control register.

Bus timing is determined by the frequency of the
Z280 MPU's external clock source or crystal and
the contents of the Bus Timing and Initialization
register, which receives its initial values as
part of the reset process (see section 3.2.1).

The frequency of the processor clock is one-half
of the frequency of the external clock source or
crystal. The processor clock can be further
divided by a factor of 1, 2, or 4 to provide the
bus timing clock, as specified by the contents of
the Clock Scaling field in the Bus Timing and
Initialization register. The bus timing clock is
output by the MPU as the CLK signal. In the
logical timing diagrams that follow, signal
transitions on the bus are shown in relation to
the bus clock, CLK.

The number of automatic wait states included in a
given transaction is determined by the contents of
the Bus Timing and Initialization and Bus Timing
and Control registers. The physical memory
address space is divided into two sections based
on the most significant physical address bit,
A23* Up to three automatic wait states can be
added to transactions to the lower half of memory
(addresses where A23 = 0)> similarly, up to three
automatic wait states can be added to transactions
to the upper half of memory (A23 = O, to all I/O
transactions, and to interrupt acknowledge
transactions.

The state of the Multiprocessor Configuration
Enable bit in the Bus Timing and Initialization
register and the contents of the Local Address
register determine which memory transactions
require use of a global bus, as described in
section 10.3. The contents of the Cache Control
register and the state of the address tags and
valid bits in the cache memory determine which
transactions employ the cache memory and which
transactions use the external bus interface, as
described in Chapter 8.

At any given time, one device (either the CPU or a
bus requester) has control of the bus and is known
as the bus master. A transaction is initiated by
the bus master and is responded to by some other
device on the bus. Information transfers (both
instructions and data) to and from the Z280 MPU
are accomplished through the use of transactions.
All transactions start when Address Strobe (AS) is
driven low and then raised high.

On the rising edge of AS, the bus status signals
(STq—ST3, R/W, and B/W) are valid. The STq—ST3
status lines indicate the type of transaction
being performed (Table 13-1). Typically, these
signals are decoded and used to enable the
appropriate buffers, drivers, and chip select
logic necessary for proper completion of the data
transfer.

Table 13-1. ST Status Line Decode

Status Lines
3 * * 0 Type of Transaction

0000 Reserved
0001 Refresh
0010 I/O transaction
0011 Halt
0100 Interrupt acknowledge line A
0101- NMI acknowledge
0110 Interrupt acknowledge line B
0111 Interrupt acknowledge line C
1000 Transfer between CPU and memory, cacheable
1001 Transfer between CPU and memory,

non-cacheable
V M*' •- 1010 -V ‘ Data transfer between EPU and memory

1011 Reserved
1100 ■ EPU Instruction fetch, template, subsequent
♦ words
1101 EPU Instruction fetch, template, first word
1110 Data transfer between EPU and CPU
1111 Test and Set (data transfers).

If the transaction requires an address, the
address is valid on the rising edge of AS. Thus,
AS can be used to latch Z280 MPU addresses to
de-multiplex the Address/Data lines. No address
is required for EPU-CPU or Interrupt Acknowledge
transactions; the contents of the A and AD lines
are undefined while AS is asserted during these
transactions. If an address is generated for a
transaction, the Output Enable (OE) signal is
activated coincident with AS assertion.

*

13-4

The Z-BUS MPUs use Data Strobe (DS) to time the
transfer of data. For transactions that do not
involve the transfer of data (Refresh and Halt
transactions), DS is not activated. During write
operations (R/W = low), a low on DS indicates that
valid data from the bus master is on the
Address/Data lines. The Output Enable line
continues to be asserted until DS is deasserted.
For Read Operations (R/W = high), the bus master
drives DS low when the addressed device is to put
its data on the bus. Coincident with the
assertion of DS during a read operation, the AD
lines are 3-stated by the bus master, OE is
deasserted, and Input Enable (IE) is asserted.
The bus master samples the data on the falling
clock edge just before deasserting DS and IE.

The Z280 MPU's WAIT input provides «3 mechanism
whereby the timinq of a particular transaction can
be extended to accommodate a memory or peripheral
device with a lonq access time. The WAIT line is
sampled on the fallinq clock edge when data is to
be sampled (i.e. just before DS rises) durinq a
transaction. If the WAIT line is low, another bus
clock cycle is added to the transaction before
data is sampled and DS rises. In this added
cycle, and all subsequent cycles added due to WAIT
beinq low, the WAIT line is sampled on the fallinq
edge of the clock and, if it is low, another cycle
is added to the transaction. In this way, the
transaction can be extended by external loqic to
an arbitrary lenqth, in increments of one bus
clock cycle.

The WAIT input is synchronous, and must meet the
specified setup and hold times in order for the
Z280 MPU to function correctly. This requires
asynchronously-generated WAIT signals to be
synchronized to the CLK output before they are
input into the Z280 MPU. Automatic wait states
can also be generated by programming the Bus
Timing and Control register and Bus Timing and
Initialization register; these are inserted in
the transaction before the external WAIT signal is
sampled.

13.3.1 Meiaory Transactions

Memory transactions move instructions or data to
or from memory when a bus master makes a memory
access. Thus, they are qenerated during program
execution to fetch instructions from memory and to
fetch and store memory data. They are also
qenerated to store old program status and fetch
new proqram status durinq interrupt and trap
handlinq, and to transfer information durinq DMA-
controlled memory accesses. A memory transaction
is three bus cycles lonq unless extended with
hardware- and/or software-generated wait states,
as explained previously.

Durinq memory transactions, the ST3-STg status
lines indicate that a memory transaction is
occurring and provide the following information:

• Whether the memory access is cacheable (ST3-STg
= 1000) or noncacheable (STj-STg = 1001).

• Whether the memory access is a fetch of an
extended instruction’s template intended for an
EP’J (ST3-Sr0 = 1100 or 1101).

• Whether the data is supplied or captured by an
Extended Processor Unit while executing an
extended instruction (ST3—STq = 1010).

• Whether the memory access is part of an atomic
read-modify-write operation during the
execution of a Test and Set instruction
(sr3-sr0 = 1 1 1 1).

A memory read is distinguished from a memory write
via the R/W signal. "llv--

/

13.3.1.1 Byte/Mord Organization

The byte is the basic addressable memory element
in Z280 MPU systems. However, although memory is
addressed as bytes, the Z-BUS configuration of the
Z280 MPU has a 16-bit data path, and memory trans­
actions can be byte or word transfers. Each
16-bit word in memory is made up of two 8-bit
bytes, where the least-significant byte preceeds
the most-significant byte of the word, as in the
Z80 CPU architecture. For example, the word at
memory location 5000^ has its low-order byte at
location 5000^ and its high-order byte at
location 5001^.

**?

Bytes transferred to or from odd memory locations
(address bit 0 = 1) are always transmitted on
lines ADg-ADy. Bytes transferred to or from even
memory locations (address bit 0 = 0) are always
transmitted on lines ADg-AD^3. For byte reads B/W
= high, R/W = high), the CPU or on-chip DMA
channel uses only the byte whose address it put
out on the bus. In other words, for a byte read
with an odd address, the CPU or DMA channel will
only read the lower half of the bus; for a byte
read with an even address, the CPU or DMA channel
will only read the upper half of the bus. For
byte writes (B/W = high, R/W = low), the CPU or
on-chip DMA channel (flowthrough mode) places the
byte to be written on both halves of the bus, and
the proper byte must be selected in the memory
control logic by testing address bit 0.

For word transfers (B/W = low), all 16 bits are
captured by the CPU or DMA channnel during reads
(R/W = high) or stored by the memory during writes

13-3

(R/W = low). The most-significant byte of the
word is transferred or, AD0-AD7 and the least-
significant byte on ADg-ADjc,; thus, the bytes of
data will appear swapped on the bus, with the most
significant byte on the lower half of the bus and
the least significant byte on the upper half of
the bus. Word transfers always use even-valued
addresses (address bit 0 = 0) and result in an
access to the byte at the even address and the
next consecutive byte at the following odd
address. For example, a word access to location
5000^ would access the byte at location 5Q0QH
(transferred on ADg-AD^) and the byte at location
5001 (transferred on ADQ-AD7).

Instruction fetches are always executed as word
transactions. However, instruction opcodes need
not be aligned on even-address boundaries; the
CPU will use only one byte of the fetched word if
appropriate.

Data accesses may be byte or word accesses. Data
words aligned at even-address memory boundaries
are accessed via one word transaction. Data words
on odd-address boundaries are accessed via two
consecutive byte transactions.

13.5.1.2 Memory Transaction Tiiinq

Memory transaction timinq is illustrated in
Fiqures 13-2 and 13-3. Durinq the first bus cycle,
AS is asserted to indicate the beginning of a
transaction; Output Enable (OF) is also asserted
at this time. All address and status information
is guaranteed valid on the rising edge of AS. The
STq-ST3 status lines indicate that a memory trans­
action is occurring, for a read operation (Figure
13-2), DS is activated durinq the first half of
the second bus cycle, after the bus master has
3-stated the AD lines; 0E is deasserted at the
beqinninq of the second cycle and Input Enable
(IE) is asserted durinq the second half of the
second cycle. The bus master samples the
information returned from memory on the Address/
Data bus on the fallinq edge of the clock durinq
the third bus cycle; after the data is sampled,
DS and IE are deasserted. For a write operation
(Fiqure 13-3), DS is asserted during the second
half of the second cycle, after the bus master has
placed the data to be written on the AD lines, and
0E stays active throughout the transaction.

O'. >t *>

K T3

CLK l

AD0-AD15

Aie-A23

~-t.' ■ . « j\.V »• ■ .

AS

STATUS
_ B/W

R/W = 1

DS

WAIT

OE

/ \

r
j

_X____ ______ Y
r ♦ • . . * . . • *. ••

i * : k

■

 ̂ r
•

Y STATUS VALID Y

\ __________r

\ j

v___/
Figure 13-2. Memory Read Timing

13-6

. . 1 ^

«_ri.—Ti-rn— T

Figure 13-3. Memory Write Timing

b -b w

CLK _ f I J l l
M B H i

Figure 13-4. Memory Read Timing with External Wait Cycle

f

H — T— H
-------------T2- -------------TW------------ -------------------- *3------------

e u < _ i i __________i ____________ t I _________ l ! I . J

__________________ l_____________________ i iL I ,

ADo~ A D l g m m m m - / ADDRESS X DATA VALID ____X
_____________________ I_____________________ I :___ I___

* ' • ■ * * * X ADDRESS X
A S

•

_ B/W
RIW = 0 X

WAIT

STATUS VALID

\

W
/

X

OE \
i i HI 2H

Figure 13-5. Memory Write Timing with External Wait Cycle

I * — -T| T a -— — » p - Tw ^ Ti — —

- _rn_rn_r~i_rn_r

13-8

The WAIT input is also sampled on the Falling edqe
of the clock durinq the third clock cycle; if
WAIT is low, another bus clock cycle is added
before samplinq the data. Wait states can also be
added throuqh proqramminq of the Bus Timing and
Initialization register and Bus Timing and Control
register. For example, Figures 13-4, 13-3, and
13-6 illustrate memory transactions with one wait
state.

13.5.1.3 Burst Memory Transactions

The Z-BUS configuration of the 7.280 MPU supports a
special kind of memory transaction called a Mburst
memory transaction” for use in systems employing
burst-mode memory devices. Control bits in the
Cache Control register indicate whether portions
of the memory system can support burst
transactions; burst mode can be specified for
either the upper half of memory (A23 = O, the
lower half of memory (A23 = 0), or both. .

Burst memory transactions are used only during
instruction fetches to "prefetch” instructions
into the on-chip cache. In a burst memory read,
four consecutive words of memory are read. If a
byte is to be read from a portion of external

memory that supports burst transactions, and that
read operation is cacheable, the CPU reads the
four words that contain the desired byte of the
instruction with a single burst transaction. The
address of the first word read during a burst
transaction has zeros in the three least
significant bits. The CPU reads a total of eight
bytes s/ia four word transfers, where the last byte
read has all ones in the three least significant
bits of its address. This effectively increases
the bus bandwidth by prefetching a cache block on
a cache miss. Burst transactions are not used
when fetching templates in extended instructions.

The timing of a burst transaction is illustrated
in Figure 13-7. During burst transactions, four
Data Strobes are generated with a single Address
Strobe. Timing for the first data transfer is
identical to that for a single memory read,
including the insertion of automatic wait states.

, This first transfer is immediately followed by
three more transfers in the next three bus clock
cycles. The WAIT input is sampled during each
transfer and any resulting wait states, thereby
allowing wait states to be added before any of the
transfers. However, automatic wait states are
added only before the first transfer.

CLK

...Tt ..-------- T2 -----T3

J I__I I__I l
4 *

l

T 5------------ --------------------T§-------------

l___r\

Figure 13-7. Burst Memory Read Timing

13-9

«

13.5,1.4 Test and Set Memory Transactions 13.5.2 Halt and Refresh Transactions

The lest and Set (TSE T) instruction provides a
locking mechanism that can be used to synchronize
software processes in a multitasking or multi­
processor system where exclusive access to certain
resources is required. TSET tests and sets
semaphores that control access to shared
resources. Execution of TSET involves a memory
read followed immediately by a memory write; the
memory read followed by the memory write is one
indivisible operation. The testing and setting of
a semaphore requires the semaphore to be read from
memory, modified, then written back into the same
memory location. During the first of these two
memory operations, the ,f1 1 1 1 M status code is
placed on the STj-STg status lines. This is
particularly useful in a multiple microprocessor
environment with semaphores in a shared memory
area. The Test and Set status code can be used to
control external circuitry that precludes memory
access by another processor during the Test and
Set semaphore operation. Furthermore, the BUSREQ
input is disabled during a Test and Set operation
to ensure that the semaphore is tested and set
without any intervening accesses.

There are two kinds of bus transactions that do
not transfer data: Halt and Refresh transactions.
These transactions are similar to memory
transactions, except that DS remains high, the
WAIT input is not sampled, and no data is
transferred. *

The Halt transaction (Figure 13-8) is generated
when a HALT instruction is encountered or a fatal
sequence of traps occurs. The "0011" status code
on the ST3-STQ lines identifies the Halt
transaction. For Halt transactions generated by
the HALT instruction, once the Halt transaction is
executed, all subsequent CPU activity is suspended
until an active interrupt request or reset is
detected. After Halt transactions generated due
to a fatal condition, all CPU activity is
suspended until an active reset is detected (see
section 6.6). However, Refresh transactions or
DMA transfers may occur while the CPU is in the
Halt state; also, the bus can be granted. The
address emitted during the address phase of the
Halt transaction is the address of the Halt
instruction or the instruction that initiated the
fatal sequence of traps.

T. h I — - I — T.

“ I I I 1 1 1
VMUL/nCOO
/

Y ADDRESS * X
i . *

1 .

I s

4
W ” 4•

• / * = 0 V y
ft/W s 1 ____ A___ f \

•

DS HIGH

•

o i A J
I I

’ t. -'V V-i.. • V-.4---,- ,

■

• Address of Halt Instruction.

Figure 13-8. Halt Timing
: -

.

-: I
:

*

13-10

£

A memory refresh transaction (Figure 13-9) is
generated by the Z280 MPU refresh mechanism and
can occur immediately after the final clock cycle
of any other transaction. The memory refresh
counter's 10-bit address is emitted on ADQ-AD9
when AS is asserted; the contents of the
remaining address lines are undefined. The "0001"
status code on the ST3-STQ lines identifies the
Refresh transaction. This transaction can be used
to generate refreshes for dynamic RAMs. Refreshes
may occur while the CPU is in the Halt state.

13.3.3 I/O Transactions

1/0 Transactions move data to or from peripherals
and are generated during the execution of 1 /0
instructions or during DMA-controlled transfers.
I/O transactions to devices in I/O pages FE^ and
FF^ do not generate external bus transactions.

Figures 13-10 and 13-11 illustrate I/O transaction
timing. I/O transactions are four clock cycles
long at a minimum, and, like memory transactions,
may be lengthened by the addition of wait cycles.
I/O transaction timing is similar to memory

transaction timing with one automatic wait state.
The "0010" status code on the STj-STg lines
indicates that an 1 /0 transaction is taking place,
and the R/W line indicates the direction of the
data transfer. The 1/0 address is found on
ADg-AD^ and A^g-A23 when AS rises. For read
operations, DS and IE are asserted during the
second clock cycle, and input data from the
peripheral is sampled by the bus master during the
fourth cycle (unless additional wait states are
inserted in the transaction). Note that DS falls
near the middle of T2 for 1/0 read transactions
(as opposed to the beginning of T2 for memory
reads); this provides peripheral control logic
with additional time for address decoding. For
write operations, DS is asserted during the second
cycle with 0E remaining asserted; output data to
the peripheral is placed on the bus at this time.

For byte 1/0 operations (B/W = high), the byte of
data is always transferred on the ADQ-AD7 bus
lines, regardless of the address of the peripheral
device. For word 1/0 operations, the most
significant byte of data is transferred on ADQ-AD7
and the least significant byte on ADg-AD^, as
with word memory transactions.

CLK
_ J f l l r

• : - - : \-kwn *

Figure 13-9. Memory Refresh Timing

/ *

:

13-11

CLK J f J l r

i

Al«-A23

AS

DATA VALID

ADDRESS

Figure 13-11. I/O Write Timing

t

13.3.4 Interrupt Acknowledge Transactions

Interrupt Acknowledge transactions acknowledge an
interrupt and read an identifier from the device
that generated the interrupt. These transactions
are generated automatically by the CPU when an
interrupt request is detected.

Interrupt Acknowledge transactions are five cycles
long at a mimimum, with two automatic wait cycles
(Figure 13—12). The wait cycles are used to give
the interrupt priority daisy chain (or other
priority resolution devices) time to settle before
the identifier is read. Additional automatic wait
states can be generated by programming the Bus
Timing and Control register.

The ST3—STq status lines indicate the type of
interrupt being acknowledged. No address is
generated, so the contents of the address bus are

undefined when AS is asserted. The R/W line
indicates read (high), and the B/W line indicates
word (low). The identifier is sampled by the CPU
on the AD lines at the falling clock edge before
DS is raised high.

There are two places where the WAIT line is
sampled and, thus, where wait states can be
inserted by external circuitry. The first, during
T2, serves to delay the falling edge of DS to
allow the daisy chain a longer time to settle;
the second, during T3, serves to delay the point
at which the identifier is read. Software-
generated wait states can also be added at either
time via programming of the DC and I/O fields in
the Bus Timing and Control register. As always,
software-generated wait states are inserted into
the transaction before the external WAIT signal is
sampled.

, t f 1 ' » 1 f * * *

--------Tlast

*■ • l * W

CLK
_ [

-Tv

l

: v f . l \ V-. ^ • r . .

- T W------------ »

l.« *

Tw

l f
t 3

Figure 13-12. Interrupt Acknowledge Timing

13-13

13.5.5 Extended Processing Unit (EPU)
Transactions

Z280 MPUs in the Z-BUS configuration can operate
in conjunction with one or more Extended
Processing Units (EPUs). Functioning as a
coprocessor, the EPU monitors the status and
timing signals output by the CPU so that it knows
when to participate in a transaction. The Z280 MPU
provides the address, status, and timing signals
while the EPU supplies or captures data. Each of
the four possible types of transactions that
require EPU participation are signalled by the
Z280 MPU STj-STg outputs. CPU and EPU interaction
is fully described in section 10.5.

fetched from memory using memor> transactions and
captured by both the CPU and EPU. The ”1101M
status code on the Sfj-Slg lines indicates when
the first word of the template is fetched, and the
" 110 0” status code indicates fetches of the
subsequent template word or words, depending on
the alignment. The CPU fetches the template from
external memory using two word transactions if the
template is aligned (that is, starts on an even
address) or a byte transaction followed by two
word transactions if the template is unaligned.
The opcode and addressing mode portion of the
extended instruction may be executed from cache,
but the template will always be fetched from
external memory. *

13.5.5.1 EPU Instruction Fetch

• T / ,.

When the Z280 CPU encounters an extended
instruction, the state of the EPU Enable bit in
the Trap Control register is examined. If the EPU
Enable bit is zero, the Z280 generates an
Extended Instruction trap. If the EPU Enable bit
is set to 1, then the four-byte EPU template is

k

In a multiple EPU system, the EPU that is to
participate in the execution of an extended
instruction is selected implicitly by an
identification code in the instruction template.
Thus, there is no indication on the bus as to
which EPU is cooperating with the CPU at any given
time.

CLK J 1 f f
ADq-ADi 5

A 16-A23

♦ AS

STATUS
_ B/W

R/W = 1

DS

WAIT / \

r
. l J DATA \.

v /

_X____ ______ X
< \ ' v v - v . * , ,

Y STATUS VALID Y
•

_ J

O ' ^

1
■ •

_ L

OE
A /

IE
_________ /

Figure 13-13. Memory to EPU Timing

■

\\

13-14

13.5.5.2 Memory-£PU Transactions

If an extended instruction involves a read or
write to memory, then the transfers of data
between memory and the EPU are the next
non-refresh transactions performed by the CPU
following the fetch of the template. The timing
of memory-EPU data transfers is shown in Figures
13-13 and 13-14. The FPU must supply the data
during write operations (R/W = low) or capture the
data during read operations (R/W = high), just as
if it were part of the CPU. In both cases, the
CPU 3-states its AD lines while data is being
transferred (DS = low). EPU reads from memory are
three cycles long unless extended by wait states.
EPU writes to memory are six cycles long unless
extended by wait states.

13.5.5.3 EPU-CPU Transactions

If an extended instruction involves a transfer
from the EPU to the Z280 CPU, the next non-refresh
transaction following the fetch of the template is
the EPU-to-CPU data transfer (Figure 13-15).

EPU-to-CPU transactions have the same form as I/O
read transactions and thus are four clock

■■ — T|-----■ — Tw--------- ------- Tw —

“J I__I I__f L

cycles long, unless extended by wait states.
Although AS is asserted, no address is generated
and the contents of the address bus are
undefined. The H1110" status code on the Sfj-STg
lines indicate an EPU-to-CPU transaction.

13.5.5.4 PAUSE Timing
i (

The PAUSE signal is used to synchronize CPU-EPU
activity in the case of overlapping extended
instructions. The CPU samples the PAUSE signal
within one bus clock period of the completion of
the fetch of art extended instruction's template
(Figure 13-16). If PAUSE is active when sampled,
the CPU enters an idle state wherein all CPU
activity is suspended. While in this idle state,
the CPU samples the PAUSE input each processor
clock cycle until PAUSE is deasserted. The CPU
then resumes operation at the point at which it
was suspended, either by executing the data
transactions associated with the extended
instruction (in the case of an extended
instruction specifying an EPU-memory or CPU-EPU
data transfer) or by starting the fetch of the
next instruction (in the case of an extended
instruction specifying an internal EPU operation).

• + ■ — - Tw ----------- Ta---------------------------- - ------------t3 --------------

J l _ l L _ l— L _ r

13-1 ̂

CLK J
AD0-AD15

Ale-A23

AS

STATUS
_ B/W

R/W = 1

DS
><•

WAIT

OE

IE

< UNDEFINED >

-TW-

f l r
< DATA >

/ \

■ x
UND EFINED X

w

Y STATUS VALID Y

• . • . • A

V r
■ • •

\
\ j

_ /
Figure 13-15. EPU to CPU Timing

CLK J l f
AS

DS

I
PAUSE

FETCH OF
LAST WORD

OF TEMPLATE
I

\
I

NEXT BUS
| TRANSACTION

I

Figure 13-16. PAUSE Timing

13-16

13.5.6 DMA Flyby Transactions

On-chip DMA channels 0 and 1 can transfer data
between memory and peripheral devices using flyby
type transfers; external DMA controllers in Z280
MPU systems (such as the Z8016 DfC) may also have
this capability. The timing of flyby transactions
is similar to memory transaction timing, with the
exception that the DMA Strobe (DMASIB) signal is
activated; the DMASTB signal is used to select
the participating I/O device that must capture or
supply the data during the memory access.

Flyby transactions controlled by the on-chip DMA
channels always include one automatic wait state
(Figures 13-17 and 13-18). As with all memory
transactions, other hardware- and software-
generated wait states can be aided to the
transaction. The external WAIT signal is sampled
at two different times: during the automatic wait
state and during T3.

CLK

-------------T ,........---------------------------T>

s —L J—L - r i—
T,-----*|

i__r

Figure 13-17. On-Chip DMA Channel Flyby Memory Read Transaction

13-17

lor flyby transactions that read from memory and
write to a peripheral (Figure 13-17), DMASfB is
asserted during the automatic wait state and any
subsequent wait states due to an active WAIT
signal. Thus, if the WAIf input is asserted
during the automatic wait state, the additional
wait states extend the width of the DMASTB pulse.
Wait states added via the assertion of WAIT during
T3 (after DMASfB is deasserted) stretch the DS
signal without affecting DMASTB.

For flyby transactions that read from a peripheral
and write to memory (Figure 13-18), DMASfB is
asserted at the beginning of T2 and remains
asserted until the second half of T3. The DS
signal is asserted only during the automatic wait
state. Wait states added via the essertion of
WAIT stretch the DMASfB signal without affecting
DS.

CLK

AD0-AD16

-& ■ ? —*

A 16-A23

AS

STATUS
_ B/W

R/W = Ozx
DS

WAIT

5e

*• - T

DMASTB

\
7

/
Y 7 \

X

\

•

1

.

• • ' HI 3H

\ ________________ /

v -: . u.

Figure 13-18. On-Chip DMA Channel Flyby Memory Write Transaction

13.6 REQUESTS

The Z280 MPU supports three types of request
signals: interrupt requests, local bus requests,
and global bus requests. A request is answered
according to its type. Interrupt requests are
generated by peripheral devices; the Z280 MPU
responds with an Interrupt Acknowledge
transaction. Local bus requests are initiated by

an external potential bus master; the Z280 MPU
responds by relinquishing the bus and generating
an active Bus Acknowledge signal. Global bus
requests are generated by the Z280 CPU or an
on-chip DMA channel to access a global bus; the
Z280 MPU receives a Global Bus Acknowledge signal
in response to the request.

13-18

I
V

13.6.1 Interrupt Requests

I he Z280 CPU supports two types of interrupts,
maskable and nonmaskable (NMI). The interrupt
request line from a device capable of generating
interrupts can be tied to the Z280 MPU's NMI or
maskable interrupt request inputs; several
devices can be connected to one interrupt request
input, with interrupt priorities established via
external logic or a priority daisy chain.

Nonmaskable interrupt requests are edge-triggered,
but maskable interrupts are level-triggered. Any
high-to-low transition on the NMI input is
asynchronously edge-detected, and an internal NMI
latch is set. At the beginning of the last clock
cycle during execution of an instruction, the
maskable interrupt inputs are sampled along with
the state of the internal NMI latch. If an
interrupt is detected, and that interrupt is
enabled in the Master Status register, interrupt

* processing proceeds in accordance with the current
interrupt mode, as described in Chapter 6.

13.6.2 Local Bus Requests

To generate transactions on the bus, a potential
bus master (such as a DMA controller) must gain
control of the bus by making a bus request. A bus
request is initiated by pulling BUSREQ low; the
Z280 MPU responds by 3-stating its address, data,
bus control, and bus status outputs and asserting

an active BUSACK, as described in section 10.2.
The CPU regains control of the bus after BUSREQ
rises. The on-chip DMA channels have higher
priority than external devices requesting the bus
via BUSREQ.

13.6.3 Global Bus Requests

If the multiprocessor mode is specified in the Bus
Timing and Initialization register, then the
contents of the Local Address register determine
the range of memory addresses dedicated to the
shared global bus. Before accessing an address on
the global bus, the Z280 MPU must issue a Global
Bus Request (GREQ) and receive an active Global
Bus Acknowledge (GACK) signal, as described in
Section 10.3.

Figure 13-19 illustrates the timing of the global
bus request/acknowledge sequence. When the Z280
MPU needs to access a location on the global bus,
GREQ is asserted in order to request use of the
global bus. GACK is then sampled on each
successive rising edge of the clock; when GACK
becomes active (and if BUSREQ is not asserted),
the memory transaction proceeds as described in
section 13.5.1. GREQ is deasserted in the bus
cycle immediately following the end of the memory
transaction (except when executing the Test and
Set instruction, where both the memory read and
write operations are executed before deasserting
GREQ).

t-
CLK

_ I

address;
DATA

A

AS

BUSREQ

QREQ

GACK

+
U J l _r

i
ADDRESS

l

HIGH

4 *

i
Ti

l
1

I
X

Figure 13-19. Multiprocessor Mode Timing

H
I

) . S

13-19

]
!

Appendix A.
Z80/Z280 Compatibility

The Z280 MPU architecture is an upward-compatible
extension of the Z80 CPU architecture. This
compatibility extends to the instruction set,
register architecture, interrupt structure, and
bus structure of the Z280 MPU and Z80 CPU.

The Z80 CPU*s instruction set is a subset of the
Z280 MPU’s instruction set. Thus, the Z280 MPU is
completely binary-compatible with Z80 code.
However, since some Z80 instructions, such as
HALT, are privileged instructions in the Z280 MPU,
complete compatibility is achieved only when the
Z280 MPU is executing in the system mode. All Z80
software will execute successfully on a Z280 MPU
running in system mode, provided that the software
contains no timing dependencies, does not modify
itself, and does not use any of the 280*3 reserved
instruction encodings.

Since the Z280 MPU is binary-code compatible with
the Z80 CPU, the Z280 MPU*s general-purpose
register set is the same as the Z80 CPU*s, with
the exception of the Stack Pointer. The Z280 MPU
contains both a System Stack Pointer and a User
Stack Pointer, whereas the Z80 CPU has only one
Stack Pointer register. In the Z80 CPU, the R
register is used to indicate the next refresh
address; in the Z280 MPU, the R register is not
involved with the refresh logic and may be used by
the programmer as a general-purpose storage
register.

The Z280 MPU*s interrupt structure is also an
upward-compatible extension of the Z80 CPU’s. The
Z280 MPU supports all three interrupt modes found
on the Z80 CPU, as well as a fourth interrupt mode
new to the Z280 MPU.

The Z80 Bus configurations of the Z280 MPU are
also bus-compatible with the Z80 CPU, generating
the same RD, WR, IORQ, and MREQ bus control and
status signals. However, M1 is asserted during
every instruction fetch and interrupt acknowledge
cycle in the Z80 CPU; for the Z280 MPU, M1 is
asserted only during the special RETI bus
transaction and interrupt acknowledge cycles. The
Z8400 family of peripherals interface directly to

both Z80 CPUs and Z80 bus configuration of the
Z280 MPUs.

Following a reset, the Z280 MPU takes on a
configuration that is fully compatible with Z80
code. The Memory Management Unit is disabled,
meaning that the 16-bit logical addresses from the
Z280 CPU are routed directly to the 16
least significant address pins on the external
bus. The User/System bit in the Master Status
register specifies system-mode operation, allowing
execution of privileged instructions and enabling
the System Stack Pointer. The I/O Page register
is cleared to all Os and Interrupt Mode 0 is
selected. The Trap Control register is cleared to
all zeros, disabling System Stack Overflow Warning
traps and designating that I/O instructions are
not privileged. All Z80 instructions can be
successfully executed (and may execute from the
on-chip memory that is enabled as an instruction-
only cache upon reset). The Z280 MPU will remain
in a Z80-compatible configuration as long as Z80
code is executed, since the Load Control
instruction that acts on the Z280 MF'U*s control
registers is not part of the Z80 instruction set.

The software routine shown below can be used to
determine if code is executing on a Z80 CPU or
Z280 MPU. This facilitates development of
programs that can execute on either processor, but
contain special routines invoked only when
executing on a Z280 MPU and, therefore, allowing
use of Z280 MPU features not available on the Z80
CPU. The routine differentiates the Z80 CPU from
the Z280 MPU by executing the instruction with
machine code CB37^|# This instruction code is
reserved in the Z80 CPU, and results In logically
shifting the A register one bit to the left while
shifting a 1 into the least significant bit. For
the Z280 MPU, CB37|̂ is the code for the Test and
Set instruction. If the A register holds a 40^
before executing this instruction code, the A
register holds an 81^ and the Sign flag is set

. to 1 after executing the instruction on a Z80 CPU;
the A register holds an FF^ and the Sign flag is
cleared to 0 after executing the instruction on a
Z280 MPU.

A-1

••

«•
*

1*
*

Code to Distinguish Execution on a Z80 CPU and Z280 MPU

This instruction sequence exploits the difference when executing the CB37|_j
machine code on the Z80 CPU and Z280 MPU, to allow a program to determine which
processor it is executing on. This instruction sets the S flag on the Z80 CPU

; and clears the S flag on the Z280 MPU. The A and F registers are used by the
rout ine.

LO A,40n • ; Initialize the operand. '
DEFB 0CBh ,037h ; This instruction will set the S flag on the

- ; Z80 CPU and clear the S flag on the Z280 MPU
JP M, Z80 ; Now test the flag and jump.

or
JP P,Z280

*
?

•> f \ i * \ * •* 4 I.v i !• M

ft

Appendix B.
Z280 MPU Instruction Formats

Four formats are used to generate the machine-
language hit encodings for the Z280 MPU
instructions. Three formats are used for
instructions that are executed solely by the Z280
CPU. (These same three formats are used for Z80
CPU instruction encoding.) A fourth format is
dedicated to instructions that involve Extended
Processing Units (EPUs).

The bit encodings of the Z280 MPU instructions are
partitioned into bytes. Every instruction encoding
contains one byte dedicated to specifying the type
of operation to be performed; this byte is
referred to as the instruction's operation code
(opcode). Besides specifying a particular
operation, opcodes typically include bit encodings
specifying the operand addressing mode for the
instruction and identifying any general-purpose
registers used by the instruction. Along with the
opcode, instruction encodings may include bytes
that contain an address, displacement, and/or
immediate value used by the instruction, and
special bytes called "escape codes" that determine
the meaninq of the opcode itself.

9y themselves, one byte opcodes would allow the
encodinq of only 256 unique instructions.
Therefore, special "escape codes" that precede the
opcode in the instruction encodinq are used to
expand the number of possible instructions. There
are two types of escape codes: addressing mode
escape codes and opcode escape codes. Escape
codes are one byte in length.

Three of the instruction formats are
differentiated by the opcode escape value used;
the fourth format is for instructions that include
an EPU template. Format 1 is for instructions
without an opcode escape byte, Format 2 is For
instructions whose opcode escape byte has the
value EDj_j, and Format 3 is For instructions
whose opcode escape byte has the value EB^.
Instructions that support EPUs use Format A and
always have the opcode escape byte with value
ED|_| as the First byte oF the instruction

encoding. In Formats 2 and A, the opcode escape
byte immediately preceeds the opcode byte itselF.

In Format 3, a 1-byte displacement may be between
the opcode escape byte and opcode itself. Opcode
escape bytes are used to distinguish between two
different instructions with the same opcode byte,
thereby allowing more than 256 unique
instructions. For example, the 01^ opcode, when
alone, specifies a form of the Load Register Word
instruction; when preceded by the CB^ escape
byte, the opcode 01^ specifies a Rotate Left
Circular instruction.

Addressing mode escape codes are used to determine
the type of encodinq for the addressing mode field
within an instruction's opcode, and can be used in
instructions with and without opcode escape
values. An addressing mode escape byte can have
the value DD|̂ or FD^. The addressinq mode
escape byte, if present, is always the first byte
oF the instruction's machine code, and is immedi­
ately followed by either the opcode (Format 1) or
the opcode escape byte (Formats 2 and 3). For
example, the 79^ opcode, when alone, specifies a
Load Accumulator instruction using Register
addressing for the source operand; when preceded
by the DD|_| escape byte, the opcode 79^
specifies a Load Accumulator instruction usinq
Base Index addressing for the source operand.

The Four instruction formats are shown in Tables
9-1 through 9-4. Within each format, several
different configurations are possible, dependinq
on whether the instruction involves addressing
mode escape bytes, addresses, displacements, or
immediate data. In Tables B-1 through B-4, the
symbol "A.esc" is used to indicate the presence of
an addressing mode escape byte, "disp." is an
abbreviation for displacement, "addr•" is an
abbreviation For address, and "temp." is an
abbreviation For template. Templates in EPU
instructions are four-byte fields that include the
bit encodings that specify EPU operation.

B-1

Table B-1. Format 1 1nstruction Encodings

Example Instruction
Instruction Format Assembly Machine Code (Hex)

opcode LD A,C 79
opcode 2-byte address LD A,(addr) 3A addr(low) addr(high)
opcode 1-byte displacement DJNZ addr 10 disp
opcode immediate ■ LD E,n IE n

A.esc opcode LD A,(HL + IX) DD 79
A.esc opcode 2-byte address LD IX,(addr) DD 2A addr(low) addr(high)
A.esc opcode 1-byte displacement LD A,(IX + d) DD 7E disp
A.esc opcode 2-byte displacement LD A,(IX + dd) FD 79 d(low) d(high)
A.esc opcode immediate LD IX,nn DD 21 n(low) n(high)
A.esc opcode 2-byte address immediate LD (addr),n DD 3E addr(low) addr(high) n
A.esc opcode 1-byte displacement immediate LD (IY + d),n FD 36 d n
A.esc opcode 2-byte displacement immediate LD <addr>,n FD 06 disp(low) disp(high) n

Table B-2. Format 2 Instruction Encodings

Example Instruction
Instruction Format Assembly Machine Code (Hex)

ED opcode MULT A.B ED CO
ED opcode immediate SC nn ED 71 n(low) n(high)
ED opcode 2-byte address LD BC,(addr) ED 4B addr(low) addr(high)
ED opcode 2-byte displacement LD (HL -(- dd),A ED 3B d(low) d(high)

A.esc ED opcode MULT A,IY . FD ED E8
A.esc ED opcode 2-byte address MULT A,(addr) DD ED F8 addr(low) addr(high)
A.esc ED opcode 1 -byte displacement MULT A,(IY + d) FD ED F8 d
A.esc ED opcode 2-byte displacement LD IX,(IY + dd) DD ED 34 d(low) d(high)
A.esc ED opcode 2-byte immediate MULTUW HL.nn FD ED F3 n(low) n(high)

Table B-3. Format 3 Instruction Encodings

Example Instruction
i * 3 {• h * *"* UV * s ®

Instruction Format ' Assembly Machine Code (Hex)

CB opcode RLC(HL) CB06
A.esc CB 1-byte displacement opcode RCL(IX-fd) DDCBd06

Table B-4. Format 4 Instruction Encodings

*

Instruction Format

^ •

Example Instruction
Assembly Machine Code (Hex)

ED opcode 4-byte template EPU ♦-(HL) ED A6 tem pi temp2 temp3 temp4
ED opcode 2-byte displacement 4-byte template EPU + -(HL + dd) ED BC d(low) d(high) tem pi temp2 temp3 temp4
ED opcode 2-byte address 4-byte template EPU +- (addr) ED A7 addr(low) addr(high) tem pi temp2 temp3 temp4

B-2

Appendix C.
Instructions in Alphabetic Order

SOURCE CODE O BJECT CODE SOURCE CODE O BJEC T CODE
ADC A,(HL) 8E ADD A,D 82
ADC A ,(H L+ IX) DD89 ADD A,E 83
ADC A ,(H L+ IY) DD8A ADD A,H 84
ADC A,(HL+1122H) FD8B2211 ADD A.IXH DD84
ADC A ,(IX + IY) DD8B ADD A,IXL DD85
ADC A,(IX+55H) DD8E55 ADD A,IYH FD84
ADC A,(IX+1122H) FD892211 "A D D A,IYL FD85
ADC A,(IY+55H) FD8E55 ADD A,L 85
ADC A,(IY+1122H) FD8A2211 ADD A,66H C666
ADC A,(PC+1122H) FD882211 ADD HL,A ED6D
ADC A,(SP+1122H) DD882211 ADD HL.BC 09
ADC A,(3344H) DD8F4433 ADD HL,DE 19

. A D C ,: A, A r" : ' 8F •> .> ADD
ADC A,B 88 ADD HL,SP 39
ADC A,C 89 ADD IX,A DDED6D
ADC A,D 8A ADD IX,BC DD09
ADC A,E 8B ADD IX,DE DD19
ADC A,H 8C ADD IX,IX DD29
ADC A,IXH DD8C ADD IX,SP DD39
ADC A.IXL DD8D ADD IY,A FDED6D
ADC A.IYH FD8C ADD IY,BC FD09
ADC A.IYL FD8D ADD IY,DE FD19
ADC A,L 8D ADD IY,IY FD29
ADC A,66H CE66 ADD IY,SP FD39
ADC HL.BC ED4A ADDW HL,(HL) DDEDC6
ADC HL.DE ED5A ADDW HL,(IX+1122H) FDEDC62211
ADC HL.HL ED6A ADDW HL,(IY+1122H) FDEDD62211
ADC HL.SP ED7A ADDW HL,(PC+1122H) DDEDF52211
ADC IX,BC DDED4A ADDW HL,(3344H) DDEDD64433
ADC IX,DE DDED5A ADDW HL.BC EDC6
ADC IX,IX DDED6A ADDW HL.DE EDD6
ADC IX,SP DDED7A ADDW h l h l EDE6
ADC IY,BC FDED4A ADDW HL.IX DDEDE6
ADC IY,DE FDED5A ADDW HL,IY FDEDE6
ADC IY,IY FDED6A ADDW HL,SP EDF6
ADC IY,SP FDED7A ADDW HL.3344H FDEDF64433
ADD A,(HL) 86 AND A,(HL) A6
ADD A ,(H L+ IX) DD81 AND A ,(H L+ IX) DDA1
ADD A ,(H L+ IY) DD82 AND A ,(H L+ IY) DDA2
ADD A,(HL+1122H) FD832211 AND A,(HL+1122H) FDA32211
ADD A ,(IX + IY) DD83 AND A ,(IX + IY) DDA3
ADD A,(IX+55H) DD8655 AND A,(IX+55H) DDA655
ADD A,(IX+1122H) FD812211 AND A,(IX+1122H) FDA12211
ADD A,(IY+55H) FD8655 AND A,(IY+55H) FDA655
ADD A,(IY+1122H) FD822211 AND A,(IY+1122H) FDA22211
ADD A,(PC+1122H) FD802211 AND A,(PC+1122H) FDA02211
ADD A,(SP+1122H) DD802211 AND A,(SP+1122H) DDA02211
ADD A,(3344H) DD874433 AND A,(3344H) DDA74433
ADD A,A 87 AND A,A A7
ADD A,B 80 AND A,B AO
ADD A,C 81 AND A,C A1

SOURCE CODE OBJECT CODE SOURCE CODE O BJECT CODE
AND A,D A2 BIT 5,(IX+55H) DDCB556E
AND A,E A3 BIT 5,(IY+55H) FDCB556E
AND A,H A4 BIT 5,A CB6F
AND A.IXH DDA4 BIT 5,B CBf8
AND A.IXL DDA5 BIT 5,C CB69
AND A.IYH FDA4 BIT 5,D CB(iA
AND A.IYL FDA5 BIT 5,E CB6B
AND A.L A5 BIT 5,H CB6C
AND A,66H E666 BIT 5,L CB6D
BIT O.(HL) CB46 BIT 6,(HL) CB76
BIT 0,(IX+55H) DDCB5546 BIT 6,(IX+55H) DDCB5576
B IT 0,(IY+55H) FDCB5546 BIT 6,(IY+55H) FDCB5576
B IT 0,A CB47 BIT 6,A CB77
B IT 0,B CB40 BIT 6,B CB70
BIT 0,C CB41 BIT 6,C CB71
BIT 0,D CB42 BIT 6,D CB72
BIT 0,E CB43 BIT 6,E CB73
BIT 0,H CB44 BIT 6 ,H CB74
BIT 0,L CB45 BIT 6,L CB75
BIT l.(H L) CB4E BIT 7,(HL) CB7E
BIT 1,(IX+55H) DDCB554E BIT 7,(IX+55H) DDCB557E
BIT 1,(IY+55H) FDCB554E BIT 7,(IY+55H) FDCB557E
BIT 1.A CB4F BIT 7,A CB7F
BIT l.B CB48 BIT 7,B CB78
BIT l.C CB49 BIT 7,C CB79
B IT 1.D CB4A BIT 7,D CB7A
BIT 1.E CB4B BIT 7,E CB7B
BIT 1.H CB4C BIT 7,H CB7C
BIT 1,L CB4D BIT 7,L CB7D
BIT 2,(HL) CB56 CALL (HL) DDCD
BIT 2,(IX+55H) DDCB5556 CALL (PC+1122H) FDCD2211
BIT 2,(IY+55H) FDCB5556 CALL C,(HL) DDDC
BIT 2,A CB57 CALL C,(PC+1122H) FDDC2211
BIT 2,B CB50 CALL C.3344H DC4433
BIT 2,C CB51 CALL m ,(h l) DDFC
BIT 2 D CB52 CALL M,(PC+1122H) FDFC2211
BIT 2,E

* * v £ .* < t

CB53 H CALL M.3344H - , FC4433
BIT 2,H CB54 CALL NC,(HL) DDD4
BIT 2.L CB55 CALL NC,(PC+1122H) FDD42211
BIT 3,(HL) CB5E CALL NC.3344H C44433
BIT 3,(IX+55H) DDCB555E CALL n z ,(h l) DDC4
BIT 3,(IY+55H) FDCB555E CALL NZ,(PC+1122H) FDC42211
B IT 3,A CB5F CALL NZ.3344H

9
C44433

BIT 3,B CB58 CALL P|(HL) DDF4
B IT 3,C CB59 CALL P,(PC+1122H) FDF42211
B IT 3,D CB5A CALL P.3344H F44433
B IT 3,E CB5B CALL PE, (HL) DDEC
BIT 3,H CB5C CALL P E ,(P C -fll22H) FDEC2211
B IT 3,L CB5D CALL PE.3344H EC4433
B IT 4,(HL) CB66 CALL PO,(HL) DDE4
BIT 4,(IX+55H) DDCB5566 CALL PO,(PC+1122H) FDE42211
BIT 4,(IY+55H) FDCB5566 CALL P0.3344H E44433
BIT 4,A CB67 CALL Z,(HL) DDCC
BIT 4,B CB60 CALL Z,(PC+1122H) I-DCC2211
B IT 4,C CB61 CALL Z.3344H CC4433
BIT 4,D CB62 CALL 3344H CD4433
B IT 4,E CB63 CCF 3F
BIT 4,H CB64 CP A,(HL) BE
B IT 4,L CB65 CP A ,(H L+IX) DDB9
BIT 5,(HL) CB6E CP A,(H L+IY) DDBA

C-2

SOURCE CODE OBJECT CODE SOURCE CODE O BJEC T CODE
CP A,(HL+1122H) FDBB2211 DEC IX DD2B
CP A ,(IX + IY) DDBB DEC IXH DD25
CP A,(IX+55H) DDBE55 DEC IXL DD2D
CP A,(IX+1122H) FDB92211 DEC IY FD2B
CP A,(IY+55H) FDBE55 DEC IYH FD25
CP A,(IY+1122H) FDBA2211 DEC IYL FD2D
CP A,(PC+1122H) FDB82211 DEC L 2D
CP A,(SP+1122H) DDB82211 DEC SP 3B
CP A,(3344H) DDBF4433 DECW (HL) DDOB
CP A,A BF DECW (IX+1122H) FD0B2211
CP A,B B8 DECW (IY+1122H) FD1B2211
CP A,C B9 DECW (PC+1122H) DD3B2211
CP A,D BA DECW (3344H) DD1B4433
CP A,E BB DECW BC OB
CP A,H BC DECW DE IB
CP A.IXH DDBC DECW HL 2B
CP A.IXL DDBD DECW IX DD2B
CP A.IYH FDBC DECW IY FD2B
CP A.IYL FDBD DECW SP 3B
CP A,L BD Dl F3
CP A,66H FE66 Dl 66H ED7766
CPD ■ EDA9 DIV

' * • * \ % r

HL,(HL) EDF4
CPDR EDB9 DIV HL,(HL+IX) DDEDCC
CPI EDA1 DIV HL,(HL+IY) DDEDD4
CPIR EDB1 DIV HL,(HL+1122H) FDEDDC2211
CPL 2F DIV H L,(IX+IY) DDEDDC
CPW h l ,(h l) DDEDC7 DIV HL,(IX+55H) DDEDF455
CPW HL,(IX+1122H) FDEDC72211 DIV HL,(IX+1122H) FDEDCC2211
CPW HL,(IY+1122H) FDEDD72211 DIV HL,(IY+55H) FDEDF455
CPW HL,(PC+1122H) DDEDF72211 DIV HL,(IY+1122H) FDEDD42211
CPW HL,(3344H) DDEDD74433 DIV HL,(PC+1122H) FDEDC42211
CPW HL.BC EDC7 DIV HL,(SP+1122H) DDEDC42211
CPW HL.DE EDD7 DIV HL,(3344H) DDEDFC4433
CPW HL,HL EDE7 DIV HL,A EDFC
CPW HL.IX DDEDE7 DIV HL,B EDC4
CPW HL.IY FDEDE7 DIV HL,C EDCC
CPW HL.SP EDF7 DIV HL,D EDD4
CPW HL.3344H FDEDF74433 DIV HL,E EDDC
DAA 27 DIV HL,H EDE4
DEC (HL) 35 DIV

<
HL.IXH DDEDE4

DEC (H L+IX) DDOD DIV HL.IXL DDEDEC
DEC (H L+IY) DD15 DIV HL.IYH FDEDE4
DEC (HL+1122H) FD1D2211 DIV HL.IYL FDEDEC
DEC (IX + IY) DD1D DIV HL,L EDEC
DEC (IX+55H) DD3555 DIV HL.66H FDEDFC66
DEC (IX+1122H) FD0D2211 DIVU h l ,(h l) EDF5
DEC (IY+55H) FD3555 DIVU HL,(HL+IX) DDEDCD
DEC (IY+1122H) FD152211 DIVU HL,(HL+IY) DDEDD5
DEC (PC+1122H) FD052211

t ,

DIVU HL,(HL+1122H) FDEDDD2211
DEC (SP+1122H) DD052211 DIVU H L,(IX+IY) DDEDDD
DEC (3344H) DD3D4433 DIVU HL,(IX+55H) DDEDF555
DEC A 3D DIVU HL,(IX+1122H) FDEDCD2211
DEC B 05 DIVU HL,(IY+55H) FDEDF555
DEC BC OB DIVU HL,(IY+1122H) FDEDD52211
DEC C OD DIVU HL,(PC+1122H) FDEDC52211
DEC D 15 DIVU HL,(SP+1122H) DDEDC52211
DEC DE IB DIVU HL,(3344H) DDEDFD4433
DEC E ID DIVU HL,A EDFD
DEC H 25 DIVU HL,B EDC5
DEC HL 2B DIVU HL,C EDCD

C-3

m

SOURCE CODE O BJECT CODE SOURCE CODE O BJECT CODE
DIVU HL,D EDD5 EX A,(PC+1122H) FDED072211
DIVU HL,E EDDD EX A.(SP+1122H) CDED072211
DIVU HL,H EDE5 EX A,(3344H) CDED3F4433
DIVU HL.IXH DDEDE5 EX A.A ED3F
DIVU HL.IXL DDEDED EX A.B ED07
DIVU HL.IYH FDEDE5 EX A.C EDOF
DIVU HL.IYL FDEDED EX A.D ED17
DIVU HL,L EDED EX A.E ED1F
DIVU HL.66H FDEDFD66 EX A.H ED27
DIVUW DEHL,(HL) DDEDCB EX A.IXH DDED27
DIVUW DEHL,(IX+1122H) FDEDCB2211 EX A.IXL DDED2F
DIVUW DEHL,(IY+1122H) FDEDDB2211 EX A.IYH FDED27
DIVUW DEHL,(PC+1122H) DDEDFB2211 EX A.IYL FDED2F
DIVUW DEHL,(3344H) DDEDDB4433 EX A.L ED2F
DIVUW DEHL.BC EDCB EX AF.AF’ 08
DIVUW DEHL.DE EDDB EX DE.HL FB
DIVUW DEHL.HL EDEB EX H.L FDEF
DIVUW DEHL.IX DDEDEB EX IX.HL

1 ' . . DDEB
DIVUW DEHL.IY FDEDEB EX

• *♦ p
IY.HL FDEB

DIVUW DEHL.SP EDFB EXTS A ED64
DIVUW DEHL.3344H FDEDFB4433 EXTS HL ED6C
DIVW DEHL,(HL) DDEDCA EXX D9
DIVW DEHL,(IX+1122H) FDEDCA2211 HALT 76
DIVW DEHL,(IY+1122H) FDEDDA2211 IM 0 ED46
DIVW DEHL,(PC+1122H) DDEDFA2211 IM 1 ED56
DIVW DEHL,(3344H) DDEDDA4433 IM 2 ED5E
DIVW DEHL.BC EDCA IM 3 ED4E
DIVW DEHL.DE EDDA IN (H L+IX).(C) DDED48
DIVW DEHL.HL EDEA IN (H L+IY),(C) DDED50
DIVW DEHL.IX DDEDEA IN (HL+1122H),(C) FDED582211
DIVW DEHL.IY FDEDEA IN (IX + IY),(C) DDED58
DIVW DEHL.SP EDFA IN (IX+1122H), (C) FDED482211
DIVW DEHL.3344H FDEDFA4433 IN (IY+1122H),(C) FDED502211
DJNZ 77H 1075 IN (PC+1122H),(C) FDED402211
El FB IN (SP+1122H),(C) DDED402211
El 66H ED7F66 IN (3344H),(C) DDED784433
EPUF > / (. *' • * 'v .'■/ . ED97 -IN ED78 .,
EPUI ED9F IN A,(66H) DB66
EPUM (HL) EDA6 IN B,(C) ED40
EPUM (H L+IX) ED8C IN c ,(c) ED48
EPUM (H L+IY) ED94 IN D,(C) ED50
EPUM (HL+1122H) EDBC2211 IN E,(C) ED58
EPUM (IX + IY) ED9C IN H,(C) ED60
EPUM (IX+1122H) EDAC2211 IN HL,(C) EDB7
EPUM (IY+1122H) EDB42211 IN IXH,(C) DDED60
EPUM (PC+1122H) EDA42211 IN IXL,(C) DDED68
EPUM (SP+1122H) ED842211 IN IYH,(C) FDED60
EPUM (3344H) EDA74433 IN IYL,(C) FDED68
EX (SP).HL E3 IN L,(C) ED68
EX (SP).IX DDE3 INC (HL) 34
EX (SP) ,1Y FDE3 INC (H L+IX) DDOC
EX A.(HL) ED37 INC (H L+IY) DD14
EX A ,(H L+ IX) DDEDOF INC (HL+1122H) FD1C2211
EX A ,(H L+ IY) DDED17 INC (IX + IY) DD1C
EX A,(HL+1122H) FDED1F2211 INC (IX+55H) DD3455
EX A .jlX + IY) DDED1F INC (IX+1122H) FDOC2211
EX A,(IX+55H) DDED3755 INC (IY+55H) FD3455
EX A,(IX+1122H) FDED0F2211 INC (IY+1122H) FD142211
EX A,(IY+55H) FDED3755 INC (PC+1122H) FD042211
EX A,(IY+1122H) FDED172211 INC (SP+1122H) DD042211

C-4

SOURCE CODE O BJECT CODE SOURCE CODE O BJEC T CODE
INC (3344H) DD3C4433 JP PE,(PC+1122H) FDEA2211
INC A 3C JP PE.3344H EA4433
INC B 04 JP PO,(HL) DDE2
INC BC 03 JP PO,(PC+1122H) FDE22211
INC C OC JP P0.3344H E24433
INC D 14 JP Z.(HL) DDCA
INC DE 13 JP Z,(PC+1122H) FDCA2211
INC E 1C JP Z.3344H CA4433
INC H 24 JP 3344H C34433
INC HL 23 JR C,77H 3875
INC IX DD23 JR NC,77H 3075
INC IXH DD24 JR NZ,77H 2075
INC IXL DD2C JR Z.77H 2875
INC IY FD23 JR 77H 1875
INC IYH FD24 LD (b c) ,a 02
INC IYL FD2C LD (DE),A 12
INC L 2C LD (h l) ,a 77
INC SP 33 LD (h l) ,b 70
INCW (HL) DD03 LD (HL),BC ED0E
INCW (IX+1122H) FD032211 LD (HL).C 71
INCW (IY+1122H) FD132211 LD (HL),D 72
INCW (PC+1122H) DD332211 ’ * : - LD ' (HL),DE ED1E
INCW (3344H) DD134433 LD (h l) ,e 73
INCW BC 03 LD (h l) ,h 74
INCW DE 13 LD (HL),HL ED2E
INCW HL 23 LD (h l) ,l 75
INCW IX DD23 LD (HL),SP ED3E
INCW IY FD23 LD (HL),66H 3666
INCW SP 33 LD (H L+IX),A ED0B
IND EDAA LD (H L + IX)(HL ED0D
INDR EDBA LD (H L+IX),IX DDED0D
INDRW ED9A LD (H L+IX),IY FDEDOD
INDW ED8A LD (HL+IX),66H DD0E66
INI EDA2 LD (H L+IY),A ED13
INIR EDB2 LD (HL+IY),H L ED15
INIRW ED92 LD (H L+IY),IX DDED15
INIW ED82 LD (H L+IY),IY FDED15
INW HL.(C) EDB7 LD (HL+IY),66H DD1666
JAF 77H DD2874 LD (HL+1122H),A ED3B2211
JAR 77H DD2074 LD (HL+1122H),HL ED3D2211
JP (HL) E9 LD (HL+1122H),IX DDED3D22U
JP (IX) DDE9 LD (HL+1122H),IY FDED3D2211
JP (IY) FDE9 LD (HL+1122H),66H FD1E221166
JP (PC+1122H) FDC32211 LD (IX + IY),A ED1B
JP C,(HL) DDDA LD (IX+IY),H L ED1D
JP C,(PC+1122H) FDDA2211 LD (IX + IY),IX DDED1D
JP C.3344H DA4433 LD (IX + IY),IY FDED1D
JP M.(HL) DDFA LD (IX+IY),66H DD1E66
JP M,(PC+1122H) FDFA2211 LD (IX+55H),A CD7755
JP M.3344H FA4433 LD (IX+55H),B DD7055
JP NC.(HL) DDD2 LD (IX+55H),BC CDED0E55
JP NC,(PC+1122H) FDD22211 LD (IX+55H),C CD7155
JP NC.3344H D24433 LD (IX+55H),D DD7255
JP NZ,(HL) DDC2 LD (IX+55H),DE DDED1E55
JP NZ,(PC+1122H) FDC22211 LD (IX+55H),E DD7355
JP NZ.3344H C24433 LD (IX+55H),H DD7455
JP P»(HL) DDF2 LD (IX+55H),HL DDED2E55
JP P,(PC+1122H) FDF22211 LD (IX+55H),L DD7555
JP P.3344H F24433 LD (IX+55H),SP DDED3E55
JP PE.(HL) DDEA LD (IX+55H),66H DD365566

C-5

SOURCE CODE OBJECT CODE
LD (IX+1122H),A ED2B2211
LD (IX+1122H),HL ED2D2211
LD (IX+1122H),IX DDED2D2211
LD (lX -h l 122H) FDED2D2211
LD (IX+1122H))66H FD0E221166
LD (IY+55H),A FD7755
LD (IY-+-55H) ,B FD7055
LD (IY+55H),BC FDED0E55
LD (IY+55H),C FD7155
LD (IY+55H),D FD7255
LD (IY+55H),DE FDED1E55
LD (IY+55H),E FD7355
LD (IY+55H),H FD7455
LD (IY+55H),HL FDED2E55
LD (IY+55H),L FD7555
LD (IY+55H),SP FDED3E55
LD (IY+55H),66H FD365566
LD (IY+1122H),A ED332211
LD (IY+1122H),HL ED352211
LD (IY+1122H))IX DDED352211
LD (IY+1122H)IIY FDED352211
LD (IY+1122H)166H FD16221166
LD (PC+1122H),A ED232211
LD (PC+1122H),HL ED252211
LD (PC+1122H),IX DDED252211
LD (PC+1122H),IY FDED252211
LD (PC+1122H),66H FD06221166
LD (SP+1122H),A ED032211
LD (SP+1122H),HL ED052211
LD (SP+1122H),IX DDED052211
LD (SP+1122H),IY FDED052211
LD (SP+1122H),66H DD06221166
LD (3344H),A 324433
LD (3344H),BC ED434433
LD (3344H),DE ED534433
LD (3344H),HL 224433
LD (3344H) ,IX DD224433
LD (3344H),IY FD224433
LD (3344H),SP ED734433
LD (3344H),66H DD3E443366
LD A,(BC) OA
LD A,(DE) 1A
LD A,(HL) 7E
LD A ,(H L+ IX) DD79
LD A ,(H L+IY) DD7A
LD A,(HL+1122H) FD7B2211
LD A.(IX-hlY) DD7B
LD A,(IX+55H) DD7E55
LD A,(IX+1122H) FD792211
LD A,(IY+55H) FD7E55
LD A,(IY+1122H) FD7A2211
LD A,(PC+1122H) FD782211
LD A,(SP+1122H) DD782211
LD A,(3344H) 3A4433
LD A,A 7F
LD A,B 78
LD A.C 79
LD A,D 7A
LD A.E 7B
LD A,H 7C

SOURCE CODE OBJECT CODE
LD A,l ED57
LD A.IXH DD7C
LD A.IXL DD7D
LD A,IYH FD7C
LD A.IYL FC7D
LD A,L 7D
LD A,R ED5F
LD A,66H 3E66
LD B,(HL) 46
LD B,(IX+55H) DD4655
LD B,(IY+55H) FD4655
LD B,A 47
LD B,B 40
LD B,C 41
LD B,D 42
LD B,E . 43
LD B,H 44
LD B.IXH DD44
LD B.IXL DD45
LD B.IYH FD44
LD B.IYL FD45
LD B,L AS
LD B,66H 0666
LD BC,(HL) ED06
LD BC,(IX+55H) DDED0655
LD BC^IY+SSH) FDED0655
LD BC,(3344H) ED4B4433 i
LD BC.3344H 014433
LD C|(HL) 4E
LD C,(IX+55H) DD4E55
LD C,(IY+55H) FD4E55
LD C,A 4F
LD C,B 48
LD c ,c 49
LD C,D 4A
LD C,E 4B
LD> • ■ • C, H .-1(. . : , :..,40
LD C,!XH DD4C
LD C.IXL DD4D
LD C.IYH FD4C
LD C.IYL FD4D
LD C,L 4D 1
LD C.66H 0E66
LD D,(HL) 56 1
LD D,(IX+55H) CD5655
LD D,(IY+55H) FD5666
LD D,A 57
LD D,B 50
LD D,C 51
LD D,D 52
LD D.E 53
LD D,H 54
LD D.IXH DD54
LD D.IXL DD55
LD D.IYH FD54
LD D.IYL FD55
LD D,L 55
LD D.66H 1666
LD DE,(HL) ED16
LD DE,(IX+55H) DDED1655

SOURCE CODE OBJECT CODE SOURCE CODE O BJECT CODE
LD DE,(IY+55H) FDED1655 LD IXL,A DD6F
LD DE,(3344H) ED5B4433 LD IXL.B DD68
LD DE.3344H 114433 LD IXL.C DD69
LD E.(HL) 5E LD IXL.D DD6A
LD E,(IX+55H) DD5E55 LD IXL,E DD6B
LD E,(IY+55H) FD5E55 LD IXL.IXH DD6C
LD E,A 5F LD IXL.IXL DD6D
LD E,B 58 LD IXL.66H DD2E66
LD E,C 59 LD IY ,(H L+IX) FDEDOC
LD E,D 5A LD IY ,(H L+IY) FDED14
LD E,E 5B LD IY,(HL+1122H) FDED3C2211
LD E,H 5C LD IY ,(IX + IY) FDED1C
LD E,IXH DD5C LD IY,(IX+1122H) FDED2C2211
LD E.IXL DD5D LD IY,(IY+1122H) FDED342211
LD E,IYH FD5C LD IY,(PC+1122H) FDED242211
LD E.IYL FD5D LD IY,(SP+1122H) FDED042211
LD E,L 5D LD IY.3344H FD214433
LD E,66H 1E66 LD IYH,A FD67
LD h ,(h l) 66 LD IYH.B FD60
LD H,(IX+55H) DD6655 LD IYH.C FD<51
LD H,(IY+55H) FD6655 LD IYH,D FD62
LD H,A LD 1 w |_| r - • ^ r t ■ ' 'U ? • 1 ft ’ i *IY r ljL FD63
LD H,B 60 LD IYH.IYH FD»S4
LD H,C 61 LD IYH.IYL FD65
LD H,D 62 LD IYH.66H FD2666
LD H,E 63 LD IYL,A FD6F
LD H,H 64 LD IYL,B FD68
LD H,L 65 LD IYL.C FD69
LD H.66H 2666 LD IYL,D FD6A
LD HL,(HL) ED26 LD IYL,E FD6B
LD H L,(H L+IX) EDOC LD IYL.IYH FD6C
LD H L,(H L+IY) ED14 LD IYL.IYL FD6D
LD H L,(IX + IY) ED1C LD IYL.66H FD2E66
LD HL,(IX+55H) DDED2655 LD L.(HL) 6E
LD HL,(IX+1122H) ED2C2211 LD L,(IX+55H) DD6E55
LD HL,(IY+55H) FDED2655 LD L,(! Y-+-55H) FD6E55
LD HL,(IY+1122H) ED342211 LD L,A 6F
LD HL,(PC+1122H) ED242211 LD L,B 68
LD HL,(SP+1122H) ED042211 LD L,C 69
LD HL,(3344H) 2A4433. , - \«t ■ l d l ,d 6 A
LD HL.3344H 214433 LD L,E 6B
LD I.A ED47 LD L,H 6C
LD IX ,(H L+IX) DDEDOC LD L,L 6D
LD IX ,(H L+IY) DDED14 LD L,66H 2E66
LD IX,(HL+1122H) DDED3C2211 LD R,A ED4F
LD IX ,(IX + IY) DDED1C LD SP.(HL) ED36
LD IX,(IX+1122H) DDED2C2211 LD SP,(IX+55H) DDED3655
LD IX,(IY+1122H) DDED342211 LD SP,(IY+55H) FDIED3655
LD IX,(PC+1122H) DDED242211 LD SP,(3344H) ED7B4433
LD IX,(SP+1122H) DDED042211 LD SP,HL F9
LD IX,(3344H) DD2A4433 LD SP.IX DDF9
LD IX.3344H DD214433 LD SP.IY FDF9
LD IXH.A DD67 LD SP.3344H 314133
LD IXH.B DD60 LDA H L,(HL+IX) EDOA
LD IXH.C DD61 LDA H L,(H L+IY) ED12
LD IXH.D DD62 LDA HL,(HL+1122H) EDoA2211
LD IXH,E DD63 LDA HL.(IX-t-IY) EDI A
LD IXH.IXH DD64 LDA HL,(IX+1122H) ED2A2211
LD IXH.IXL DD65 LDA HL,(IY+1122H) ED322211
LD IXH.66H DD2666 LDA HL,(PC+1122H) ED222211

C-7

I

SOURCE CODE OBJECT CODE SOURCE CODE O EJEC T CODE
LDA HL,(SP+1122H) ED022211 LDW (HL+1122H),IX DDED3D2211
LDA HL,(3344H) 214433 LDW (HL+1122H),IY FDED3D2211
LDA IX ,(H L+IX) DDEDOA LDW (IX+IY),HL ED1D
LDA IX, (HL-+-IY) DDED12 LDW (IX +IY),IX DDED1D
LDA IX,(HL+1122H) DDED3A2211 LDW (IX+IY),IY FDED1D
LDA IX ,(IX + IY) DDED1A LDW (IX+55H),BC DDED0E55
LDA IX,(IX+1122H) DDED2A2211 LDW (IX+55H),DE DDED1E55
LDA IX,(IY+1122H) DDED322211 LDW (IX+55H),HL DCED2E55
LDA IX,(PC+1122H) DDED222211 LDW (IX+55H),SP DDED3E55
LDA IX,(SP+1122H) DDED022211 LDW (IX+1122H),HL ED2D2211
LDA IX,(3344H) DD214433 LDW (IX+1122H),IX DDED2D2211
LDA IY ,(H L+IX) FDEDOA LDW (IX+1122H),IY FDED2D2211
LDA IY ,(H L+IY) FDED12 LDW (IY+55H),BC FDED0E55
LDA IY,(HL+1122H) FDED3A2211 LDW (IY+55H),DE FDED1E55
LDA IY ,(IX + IY) FDED1A LDW (IY+55H),HL FDED2E55
LDA IY,(IX+1122H) FDED2A2211 LDW (IY+55H),SP FCED3E55
LDA IY,(IY+1122H) FDED322211 LDW (IY+1122H),HL ED352211
LDA IY,(PC+1122H) FDED222211 LDW (IY+1122H),IX DDED352211
LDA IY,(SP+1122H) FDED022211 LDW (IY+1122H),IY • FDED352211
LDA IY,(3344H) FD214433 LDW (PC+1122H),HL ED252211
LDCTL (C).HL ED6E LDW (PC+1122H),IX DDED252211
LDCTL (C),IX DDED6E LDW (PC+1122H),IY FDED252211
LDCTL (C) ,1Y FDED6E LDW (PC+1122H),3344H DD3122114433
LDCTL HL,(C) ED66 LDW (SP+1122H),HL ED052211
LDCTL HL.USP ED87 LDW (SP+1122H)IIX DDED052211
LDCTL >X,(C) DDED66 LDW (SP+1122H),IY FDED052211
LDCTL IX.USP DDED87 LDW (3344H),BC ED434433
LDCTL IY,(C) FDED66 LDW (3344H),DE ED534433
LDCTL IY.USP FDED87 LDW (3344H),HL 224433
LDCTL USP.HL ED8F LDW (3344H),IX DD224433
LDCTL USP.IX DDED8F LDW (3344H) ,1Y FD224433
LDCTL USP.IY FDED8F LDW (3344H),SP ED734433
LDD EDA8 LDW (3344H),8899H DD1144339988
LDDR ' EDB8 LDW BC.(HL) ED06
LDI EDAO LDW BC,(IX+55H) DDED0655
LDIR EDBO LDW BC,(IY+55H) FDED0655
LDUD (HL),A ED8E LDW BC,(3344H) ED4B4433
LDUD (IX+55H),A DDED8E55 * LDW BC.3344H 014433
LDUD (IY+55H),A FDED8E55 LDW DE,(HL) ED16
LDUD A.(HL) ED86 LDW DE,(IX+55H) DDED1655
LDUD A,(IX+55H) DDED8655 LDW DE,(IY+55H) FDED1655
LDUD A,(IY+55H) FDED8655 LDW DE,(3344H) ED5B4433
LDUP (HL),A ED9E LDW DE.3344H 114433
LDUP (IX+55H),A DDED9E55 LDW h l ,(h l) ED26
LDUP (IY+55H),A FDED9E55 LDW HL,(HL+IX) EDOC
LDUP a ,(h l) ED96 LDW HL,(HL+IY) ED14
LDUP A,(IX+55H) DDED9655 LDW HL,(HL+1122H) ED3C2211
LDUP A,(IY+55H) FDED9655 LDW HL,(IX+IY) ED1C
LDW (HL),BC EDOE LDW HL((IX+55H) DDED2655
LDW (HL),DE ED1E LDW HL,(IX+1122H) ED2C2211
LDW (HL),HL ED2E LDW HL,(IY+55H) FDED2655
LDW (HL).SP ED3E LDW HL,(IY+1122H) ED342211
LDW (HL),3344H DD014433 LDW HL,(PC+1122H) ED242211
LDW (H L+IX),H L EDOD LDW HL,(SP+1122H) ED042211
LDW (H L+IX),IX DDEDOD LDW HL,(3344H) 2A4433
LDW (H L+IX),IY FDEDOD LDW HL.3344H 214433
LDW (H L+IY),H L ED15 LDW IX,(H L+IX) DDEDOC
LDW (H L+ IY),IX DDED15 LDW IX,(HL+1Y) DDED14
LDW (H L+IY),IY FDED15 LDW IX,(HL+1122H) DDED3C2211
LDW (HL+1122H),HL ED3D2211 LDW IX ,(IX+IY) DDED1C

C-8

SOURCE CODE OBJECT CODE SOURCE CODE O BJEC T CODE
LDW IX,(IX+1122H) DDED2C2211 MULTU A ,(H L+IY) DDEDD1
LDW IX,(IY+1122H) DDED342211 MULTU A,(HL+1122H) FDEDD92211
LDW IX,(PC+1122H) DDED242211 MULTU A, (IX + IY) DDEDD9
LDW IX,(SP+1122H) DDED042211 MULTU A,(IX+55H) DDEDF155
LDW IX,(3344H) DD2A4433 MULTU A, (IX+1122H) FDEDC92211
LDW IX.3344H DD214433 MULTU A,(IY+55H) FDEDF155
LDW IY ,(H L+IX) FDEDOC MULTU A,(IY+1122H) FDEDD12211
LDW IY ,(H L+IY) FDED14 MULTU A,(PC+1122H) FDEDC12211
LDW IY,(HL+1122H) FDED3C2211 MULTU A,(SP+1122H) DDEDC12211
LDW IY,(1X+IY) FDED1C MULTU A,(3344H) DDEDF94433
LDW IY,(IX+1122H) FDED2C2211 MULTU A,A EDF9
LDW IY,(IY+1122H) FDED342211 MULTU A.B EDC1
LDW IY,(PC+1122H) FDED242211 MULTU A,C EDC9
LDW IY,(SP+1122H) FDED042211 MULTU A,D EDD1
LDW IY,(3344H) FD2A4433 MULTU A,E EDD9 »
LDW IY.3344H FD214433 MULTU A,H EDE1
LDW SP.(HL) ED36 MULTU A.IXH DDEDE1
LDW SP,(IX+55H) DDED3655 MULTU A.IXL DDEDE9
LDW SP,(IY+55H) FDED3655 MULTU A.IYH FDEDE1
LDW SP,(3344H) ED7B4433 MULTU A.IYL FDEDE9
LDW SP.HL F9 MULTU A,L EDE9
LDW SP.IX DDF9 ‘■.r-.f--- ■- :■ ‘ MULTU A,66H ! *•’ FDEDF966
LDW SP.IY FDF9 MULTUW HL,(HL) DDEDC3
LDW SP.3344H 314433 MULTUW HL,(IX+1122H) FDEDC32211
MEPU (HL) EDAE MULTUW HL,(IY+1122H) FDEDD32211
MEPU (H L+IX) ED8D MULTUW HL,(PC+1122H) DDEDF32211
MEPU (H L+IY) ED95 MULTUW HL,(3344H) DDEDD34433
MEPU (HL+1122H) EDBD2211 MULTUW HL.BC EDC3
MEPU (IX + IY) ED9D MULTUW HL.DE EDD3
MEPU (IX+1122H) EDAD2211 MULTUW HL.HL EDE3
MEPU (IY+1122H) EDB52211 MULTUW HL.IX DDEDE3
MEPU (PC+1122H) EDA52211 MULTUW HL,IY FDEDE3
MEPU (SP+1122H) ED852211 MULTUW HL.SP EDF3
MEPU (3344H) EDAF4433 MULTUW HL.3344H FDEDF34433
M ULT a ,(h l) EDFO MULTW HL,(HL) DDEDC2
MULT A ,(H L+IX) DDEDC8 MULTW HL,(IX+1122H) FDEDC22211
M ULT A,(H L+IY) DDEDDO MULTW HL,(IY+1122H) FDEDD22211
M ULT A,(HL+1122H) FDEDD82211 MULTW HL,(PC+1122H) DDEDF22211
MULT A ,(IX + IY) DDEDD8 MULTW HL,(3344H) DDEDD24433
M ULT A,(IX+55H) DDEDF055 MULTW HL.BC EDC2
M ULT A,(IX+1122H) FDEDC82211 MULTW HL.DE EDD2
M ULT A,(IY+55H) FDEDF055 MULTW HL.HL EDE2
MULT A,(IY+1122H) FDEDD02211 MULTW HL.IX DDEDE2
M ULT A,(PC+1122H) FDEDC02211 MULTW HL.IY FDEDE2
M ULT A,(SP+1122H) DDEDC02211 MULTW HL.SP EDF2
M ULT A,(3344H) DDEDF84433 MULTW HL.3344H FDEDF24433
M ULT A,A EDF8 NEG A EC»44
M ULT A,B EDCO NEG HL ED4C
M ULT A.C EDC8 NOP 00
M ULT A,D EDDO OR A.(HL) B6
MULT A,E EDD8 OR A ,(H L+ IX) DDB1
M ULT A,H EDEO OR A ,(H L+IY) DDB2
M ULT A.IXH DDEDEO OR A,(HL+1122H) FDB32211
M ULT A.IXL DDEDE8 OR A ,(IX + IY) DDB3
M ULT A.IYH FDEDEO OR A,(IX+55H) DDB655
MULT A.IYL FDEDE8 OR A,(IX+1122H) FDB12211
MULT A,L EDE8 OR A,(IY+55H) FDB655
M ULT A,66H FDEDF866 OR A,(IY+1122H) FDB22211
MULTU A,(HL) EDF1 OR A,(PC+1122H) FDB02211
MULTU A ,(H L+IX) DDEDC9 OR A,(SP+1122H) DDB02211

C-9

SOURCE CODE O BJECT CODE SOURCE CODE O BJEC T CODE
OR A,(3344H) DDB74433 PUSH HL E5
OR A,A B7 PUSH IX DDE5
OR A,B BO PUSH IY FDE5
OR A,C B1 PUSH 3344H FDF54433
OR A,D B2 RES O.(HL) CB86
OR A.E B3 RES 0,(IX+55H) DDCB5586
OR A.H B4 RES 0,(IY+55H) FDCB5586
OR A.IXH DDB4 RES 0,A CB87
OR A.IXL DDB5 RES 0,B CB80
OR A.IYH FDB4 RES o ,c CB81
OR A.IYL FDB5 RES 0,D CB82
OR A.L B5 RES 0,E CB83
OR A,66H F666 RES 0,H CB84
OTDR EDBB RES 0,L CB85
OTDRW ED9B RES 1,(HL) CB8E
OTIR EDB3 RES 1,(IX+55H) DDCB558E
OTIRW ED93 RES 1,(IY+55H) FDCB558E
OUT (C),(H l+ IX) DDED49 RES 1|A CB8F
OUT (C),(H L+IY) DDED51 RES -4 • 1 1 3 , * V)*«* CB88
OUT (C),(HL+1122H) FDED592211 RES l . c CB89
OUT (C),(IX + IY) DDED59 RES l.D CB8A
OUT (C),(IX+1122H) FDED492211 RES 1.E CB8B
OUT (C),(IY+1122H) FDED512211 RES l.H CB8C
OUT (C),(PC -f 1122H) FDED412211 RES 1.L CB8D
OUT (C)((SP+1122H) DDED412211 RES 2,(HL) CB96
OUT (C),(3344H) DDED794433 RES 2,(IX+55H) DDCB5596
OUT (C),A ED79 RES 2,(IY+55H) FDCB5596
OUT (C),B ED41 RES 2,A CB97
OUT (C),C ED49 RES 2,B CB90
OUT (C),D ED51 RES 2,C CB91
OUT (C).E ED59 RES 2,D CB92
OUT (C),H ED61 RES 2,E CB93
OUT (C),HL EDBF RES 2,H CB94
OUT (C),IXH DDED61 RES 2,L CB95
OUT (C).IXL DDED69 RES 3,(HL) CB9E
OUT (C),IYH FDED61 RES 3,(IX+55H) DDCB559E
OUT (C),IYL FDED69 RES 3,(IY+55H) FDCB559E
OUT* ED69 • ' RES •TS 3 , A CB9F
OUT (66H),A D366 RES 3,B CB98
OUTD EDAB RES 3,C CB99
OUTDW ED8B RES 3,D CB9A
OUTI EDA3 RES 3,E CB9B
OUTIW ED83 RES 3,H CB9C
OUTW (C),HL EDBF

/ w».
RES 3,L CB9D

PCACHE ED65 RES 4,(HL) CBA6
POP (HL) DDC1 RES 4,(IX+55H) DDCB55A6
POP (PC+1122H) DDF12211 RES 4,(IY+55H) FDCB55A6
POP (3344H) DDD14433 RES 4,A CBA7
POP AF F I RES 4,B CBAO
POP BC C l RES 4,C CBA1
POP DE D1 RES 4.D CBA2
POP HL E l RES 4,E CBA3
POP IX DDE1 RES 4,H CBA4
POP IY FDE1 RES 4,L CBA5
PUSH (HL) DDC5 RES 5,(HL) CBAE
PUSH (PC+1122H) DDF52211 RES 5,(IX+55H) DDCB55AE
PUSH (3344H) DDD54433 RES 5,(IY+55H) FDCB55AE
PUSH AF F5 RES 5,A CBAF
PUSH BC C5 RES 5,B CBA8
PUSH DE D5 RES 5,C CBA9

C-10

/
I

SOURCE CODE O BJECT CODE SOURCE CODE O BJEC T CODE
RES 5,D CBAA RR (IX+55H) DDCB551E
RES 5.E CBAB RR (IY+55H) FDCB551E
RES 5,H CBAC RR A CB1F
RES 5,L CBAD RR B CB18
RES 6*(HL) CBB6 RR C CB19
RES 6,(IX+55H) DDCB55B6 RR D CB1A
RES 6,(IY+55H) FDCB55B6 RR E CB1B
RES 6,A CBB7 RR H CB1C
RES 6,B CBBO RR L CB1D
RES 6,C CBB1 RRA IF
RES 6,D CBB2 RRC (HL) CBOE
RES 6,E CBB3 RRC (IX+55H) DDCB550E
RES 6,H CBB4 RRC (IY+55H) FDCB550E
RES 6,L CBB5 RRC A CBOF
RES 7,(HL) CBBE RRC B CB08
RES 7,(IX+55H) DDCB55BE RRC C CB09
RES 7,(IY+55H) FDCB55BE RRC D CBOA
RES 7, A CBBF RRC E CBOB
RES 7,B CBB8 RRC H CBOC
RES 7,C CBB9 RRC L CBOD
RES 7,D CBBA RRCA OF
RES 7,E ' CBBB RRD

• , • / _ * * _ \ u .1 I t , iVf*. .*» r ' »

ED67
RES 7.H CBBC RST 00H C7
RES 7.L CBBD RST 08H CF
RET C9 RST 10H D7
RET C D8 RST 18H DF
RET M F8 RST 20H E7
RET NC DO RST 28H EF
RET NZ CO RST 30H F7
RET P FO RST 38H FF
RET PE E8 SBC a ,(h l) 9E
RET PO EO SBC A ,(H L+IX) DD99
RET Z C8 SBC A ,(H L+ IY) DD9A
RETI ED4D SBC A,(HL+1122H) FD9B2211
RETIL ED55 SBC A ,(IX + IY) DD9B
RETN ED45 SBC A,(IX+55H) DD9E55
RL (HL) CB16 SBC A,(IX+1122H) FD992211
RL (IX+55H) DDCB5516 SBC A,(IY+55H) FD9E55
RL (IY+55H) FDCB5516 SBC A,(IY+1122H) FD9A2211
RL A CB17 SBC A,(PC+1122H) FD982211
RL B CB10 SBC A,(SP+1122H) DD982211
RL C CB11 SBC A,(3344H) DD9F4433
RL D CB12 SBC A,A 9F
RL E CB13 SBC A,B 98
RL H CB14 SBC A,C 99
RL L CB15 SBC A,D 9A
RLA 17 SBC A,E 9B
RLC (HL) CB06 SBC A,H 9C
RLC (IX+55H) DDCB5506 SBC A.IXH DD9C
RLC (IY+55H) FDCB5506 SBC A.IXL DD9D
RLC A CB07 SBC A.IYH FD9C
RLC B CBOO SBC A.IYL FD9D
RLC C CB01 SBC A,L 9D
RLC D CB02 SBC A.66H DE66
RLC E CB03 SBC HL.BC ED42
RLC H CB04 SBC HL.DE ED52
RLC L CB05 SBC HL.HL ED62
RLCA 07 SBC HL,SP ED72
RLD ED6F SBC IX,BC DDED42
RR (HL) CB1E SBC IX.DE DDED52

C-11

I

I

SOURCE CODE O B JEC T CODE SO URCE CODE O BJECT CODE
SBC IX,IX DDED62 SET 5,(IY+55H) FDCB55EE
SBC IX.SP DDED72 SET 5,A CBEF
SBC IY.BC FDED42 SET 5,B CBE8
SBC IY.DE FDED52 SET 5,C CEE9
SBC IYJY FDED62 SET 5,D CBEA
SBC IY.SP FDED72 SET 5,E CBEB
SC 3344H ED714433 SET 5,H CBEC
SCF 37 SET 5,L CEED
SET O.(HL) CBC6 SET 6,(HL) CBF6
SET 0,(IX+55H) DDCB55C6 SET 6,(IX+55H) DDCB55F6
SET 0,(IY+55H) FDCB55C6 SET 6,(IY+55H) FDCB55F6
SET 0,A CBC7 SET 6,A CBF7
SET 0,B CBCO SET 6,B CBFO
SET 0,C CBC1 SET 6,C CBF1
SET 0,D CBC2 SET 6,D CBF2
SET 0,E CBC3 SET 6,E CBF3
SET 0,H CBC4 SET 6,H CBF4
SET 0,L CBC5 SET 6,L CBF5
SET l.(H L)

rr • i • • s \ - ̂........• —
CBCE SET 7,(HL) CBFE

SET 1,(IX+55H) DDCB55CE SET 7,(IX+55H) DDCB55FE
SET 1,(IY+55H) FDCB55CE SET 7,(IY+55H) FDCB55FE
SET 1.A CBCF SET 7,A CBFF
SET 1.B CBC8 SET 7 , B CBF8
SET i . c CBC9 SET 7,C CBF9
SET l.D CBCA SET 7,D CBFA
SET 1.E CBCB SET 7,E CBFB
SET 1|H CBCC SET 7,H CBFC
SET 1,L CBCD SET 7,L CBFD
SET 2j(HL) CBD6 SLA (HL) CB26
SET 2,(IX+55H) DDCB55D6 SLA (IX+55H) DDCB5526
SET 2,(IY+55H) FDCB55D6 SLA (IY+55H) FDCB5526
SET 2,A CBD7 SLA A CB27
SET 2,B CBDO SLA B CB20
SET 2,C CBD1 SLA C CB21
SET 2,D CBD2 SLA D CB22
SET 2,E CBD3 SLA E CB23
SET, 2,H „ . CBD4 ,,,,.... SLA Hi '* + ' . . + '•v > ' t * ' .

CB24
SET 2,L CBD5 SLA

• ■* • /. • i % • /1 ̂ j « (̂ *
L CB25

SET 3,(HL) CBDE SRA (HL) CB2E
SET 3,(IX+55H) DDCB55DE SRA (IX+55H) DDCB552E
SET 3,(IY+55H) FDCB55DE SRA (IY+55H) FDCB552E
SET 3,A CBDF SRA A CB2F
SET 3,B CBD8 SRA B CB28
SET 3,C CBD9 SRA C CB29
SET 3,D CBDA SRA D CB2A
SET 3,E CBDB SRA E CB2B
SET 3,H CBDC SRA H CB2C
SET 3,L CBDD SRA L CB2D
SET 4,(HL) CBE6 SRL (HL) CB3E
SET 4,(IX+55H) DDCB55E6 SRL (IX+55H) DDCB553E
SET 4,(IY+55H) FDCB55E6 SRL (IY+55H) FDCB553E
SET 4,A CBE7 SRL A CB3F
SET 4,B CBEO SRL B CB38
SET 4,C CBE1 SRL C CB39
SET 4,D CBE2 SRL D CB3A
SET 4,E CBE3 SRL E CB3B
SET 4,H CBE4 SRL H CB3C
SET 4,L CBE5 SRL l CB3D
SET 5,(HL) CBEE SUB A,(HL) 96
SET 5,(IX+55H) DDCB55EE SUB A ,(H L+ IX) DD91

C-12

I

I

SOURCE CODE OBJECT CODE SOURCE CODE O B JEC T CODE
SUB A ,(H L+ IY) DD92 TSET (IX+55H) DDCB5536
SUB A,(HL+1122H) FD932211 TSET (IY+55H) l: DCB5536
SUB A ,(IX + IY) DD93 TSET A CB37
SUB A,(IX+55H) DD9655 TSET B CB30
SUB A,(IX+1122H) FD912211 TSET C CB31
SUB A,(IY+55H) FD9655 TSET D CB32
SUB A,(IY+1122H) FD922211 TSET E CB33
SUB A,(PC+1122H) FD902211 TSET H CB34
SUB A,(SP+1122H) DD902211 TSET L CB35
SUB A,(3344H) DD974433 TSTI (C) ED70
SUB A,A 97 XOR A,(HL) AE
SUB A,B 90 XOR A,(H L+IX) DDA9
SUB A.C 91 XOR A,(H L+IY) DDAA
SUB A,D 92 XOR A,(HL+1122H) FDAB2211
SUB A,E 93 XOR A ,(IX + IY) * DDAB
SUB A,H 94 XOR A,(IX+55H) DDAE55
SUB A.IXH DD94 XOR A,(IX+1122H) FDA92211
SUB A.IXL DD95 XOR A,(IY+55H) FDAE55
SUB A.IYH FD94 XOR A,(IY+1122H) FDAA2211
SUB A.IYL FD95 XOR A,(PC+1122H) FDA82211
SUB A,L 95 XOR A,(SP+1122H) DDA82211
SUB A.66H XOR A,(3344H) DDAF4433
SUBW HL,(HL) DDEDCE XOR A,A AF
SUBW HL,(IX+1122H) FDEDCE2211 XOR A.B A8
SUBW HL,(IY+1122H) FDEDDE2211 XOR A,C A9
SUBW HL,(PC+1122H) DDEDFE2211 XOR A,D AA
SUBW HL,(3344H) DDEDDE4433 XOR A,E AB
SUBW HL.BC EDCE XOR A,H AC
SUBW HL.DE EDDE XOR A.IXH [)DAC
SUBW HL.HL EDEE XOR A.IXL DDAD
SUBW HL.IX DDEDEE XOR A.IYH FDAC
SUBW HL.IY FDEDEE XOR A.IYL FDAD
SUBW HL.SP EDFE XOR A,L AD
SUBW HL.3344H FDEDFE4433 XOR A,66H EE66
TSET (HL) CB36

%

C-13

OBJECT CODE
00
014433
014433
02
03
03
04
05
0666
07
08
09

OB
OB
OC
OD
0E66
OF
1075
114433
114433
12
13
13
14
15
1666
17
1875
19
1A
IB
IB
1C
ID
1E66
IF
2075
214433
214433
214433
224433
224433
23
23
24
25
2666
27
2875

. Appendix D.
Instructions in Numeric Order

SOURCE CODE OBJECT
NOP 29
LD BC.3344H 2A4433
LDW BC.3344H 2A4433
LD (BC),A 2B
INCW BC 2B
INC BC 2C
INC B 2D
DEC B 2E66
LD B,66H 2F
RLCA 3075
EX AF.AF’ 314433
ADD HL.BC 314433
LD A,(BC) > , r 324433
DEC BC 33
DECW BC 33
INC C 34
DEC C 35
LD C.66H 3666
RRCA 37
DJNZ 77H 3875
LD DE.3344H 39
LDW DE.3344H 3A4433
LD (d e) ,a 3B
INC DE 3B
INCW DE 3C
INC D 3D
DEC D 3E66
LD D,66H 3F
RLA 40
JR 77H 41
ADD HL.DE 42
LD A,(DE) 43
DEC DE 44
DECW DE 45
INC E 46
DEC E 47
LD E.66H 48
RRA 49
JR NZ.77H 4A
LD HL.3344H 4B
LDA HL,(3344H) 4C
LDW HL.3344H 4D
LD (3344H),HL 4E
LDW (3344H),HL 4F
INCW HL 50
INC HL 51
INC H 52
DEC H 53
LD H,66H 54
DAA 55
JR Z.77H 56

CODE SOURCE CODE
ADD HL.HL
LD HL,(3344H)
LDW HL,(3344H)
DEC HL
DECW HL
INC L
DEC L
LD L.66H
CPL
JR NC.77H
LD SP.3344H
LDW SP.3344H
LD (3344H),A
INC SP
INCW SP
INC (HL)
DEC (HL)
LD (HL),66H
SCF
JR C,77H
ADD HL,SP
LD A,(3344H)
DEC SP
DECW SP
INC A
DEC A
LD A.66H
CCF
LD B,B
LD B,C
LD B,D
LD B,E
LD B,H
LD B,L
LD b ,(h l)
LD B,A
LD C,B
LD C,C
LD C,D
LD C,E
LD C,H
LD C,L
LD C,(HL)
LD C,A
LD D,B
LD D,C
LD D,D
LD D,E
LD D,H
LD D,L
LD d ,(h l)

D-1

O BJEC T CODE
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69 r- V

6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B

7D
7E
7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92

SOURCE CODE
LD D,A
LD E.B
LD E,C
LD E,D
LD E,E
LD E,H
LD E,L
LD E,(HL)
LD E,A
LD H,B
LD H,C
LD , H,D
LD H.E
LD H.H
LD H,L
LD H,(HL)
LD H,A
LD L,B
LD L,C
LD L,D
LD L,E
LD L.H
LD L,L
LD l .(h l)
LD L,A
LD (h l) ,b
LD (HL),C
LD (h l) ,d
LD (h l) ,e
LD (h l) ,h
LD (h l) ,l
HALT
LD (h l),a
LD A,B
LD A,C
LD A,D
LD A,E
LD A,H
LD A,L
LD A,(HL)
LD A,A
ADD A.B
ADD A.C
ADD A,D
ADD A,E
ADD A,H
ADD A,L
ADD A,(HL)
ADD A,A
ADC A,B
ADC A,C
ADC A,D
ADC A.E
ADC A,H
ADC A,L
ADC A,(HL)
ADC A,A
SUB A,B
SUB A,C
SUB A,D

OBJECT CODE
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
AO
A1
A2
A3
A4
A5
A6
A7 .
A8
A9
AA
AB
AC
AD
AE
AF
BO
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
CO
C l
C24433
C34433
C44433
C5
C666
C7
C8
C9
CA4433
CBOO
CB01
CB02
CB03

SOURCE CODE
SUB A,E
SUB A,H
SUB A,L
SUB a ,(h l)
SUB A,A
SBC A,B
SBC A,C
SBC A,D
SBC A,E
SBC A,H
SBC A.L
SBC a ,(h l)
SBC A,A
AND A,B
AND A,C
AND A,D
AND A,E
AND A,H
AND A,L
AND A.(HL)
AND A , A
XOR A,B
XOR A,C
XOR A,D
XOR A,E
XOR A,H
XOR A,L
XOR a ,(h l)
XOR A,A
OR A,B
OR A,C
OR A D
OR A,E
OR A,H
OR A,L
OR a ,(h l)
OR A,A
CP A,B
CP A,C
CP A.D
CP A,E
CP A,H
CP A,L
CP A,(HL)
CP A,A
RET NZ
POP BC
JP N2.3344H
JP 3344H
CALL NZ.3344H
PUSH BC
ADD A.66H
RST 00H
RET
RET

Z

JP Z.3344H
RLC B
RLC C
RLC D
RLC E

O BJEC T CODE
CB7C
CB7D
CB7E
CB7F
CB80
CB81
CB82
CB83
CB84
CB85
CB86
CB87
CB88
CB89
CB8A
CB8B
CB8C
CB8D
CB8E
CB8F
CB90
CB91
CB92
CB93
CB94
CB95
CB96
CB97
CB98
CB99
CB9A
CB9B
CB9C
CB9D
CB9E
CB9F
CBAO
CBA1
CBA2
CBA3
CBA4
CBA5
CBA6
CBA7
CBA8
CBA9
CBAA
CBAB
CBAC
CBAD
CBAE
CBAF
CBBO
CBB1
CBB2
CBB3
CBB4
CBB5
CBB6
CBB7

SOURCE CODE
BIT 7,H
BIT 7,L
BIT 7,(HL)
BIT 7,A
RES O.B
RES 0,C
RES O.D
RES 0,E
RES 0,H
RES 0.L
RES 0,(HL)
RES 0,A
RES l.B
RES i . c
RES l.D
RES 1.E
RES 1.H
RES 1.L
RES U H L)
RES 1,A
RES 2,B
RES 2.C
RES 2,D
RES 2.E
RES 2,H
RES 2.L
RES 2»(HL)
RES 2,A
RES 3.B
RES 3,C
RES 3,D
RES 3(E
RES 3,H
RES 3,L
RES 3,(HL)
RES 3,A
RES 4,B *
RES 4,C
RES 4,D
RES 4,E
RES 4,H
RES 4,L
RES 4, (HL)
RES 4,A
RES 5,B
RES 5,C
RES 5,D
RES 5.E
RES 5,H
RES 5,L
RES 5, (HL)
RES 5,A
RES 6,B
RES 6,C
RES 6,D
RES 6,E
RES 6,H
RES 6,L
RES 6»(HL)
RES 6,A

OBJECT CODE
CBB8
CBB9
CBBA
CBBB
CBBC
CBBD
CBBE
CBBF
CBCO
CBC1
CBC2
CBC3
CBC4
CBC5
CBC6
CBC7
CBC8
CBC9
CBCA
CBCB
CBCC
CBCD
CBCE
CBCF
CBDO
CBD1
CBD2
CBD3
CBD4
CBD5
CBD6
CBD7
CBD8
CBD9
CBDA
CBDB
CBDC
CBDD
CBDE
CBDF
CBEO
CBE1
CBE2
CBE3
CBE4
CBE5
CBE6
CBE7
CBE8
CBE9
CBEA
CBEB
CBEC
CBED
CBEE
CBEF
CBFO
CBF1
CBF2
CBF3

SOURCE CODE
RES 7,B
RES 7,C
RES 7,D
RES 7,E
RES 7,H
RES 7,L
RES 7,(HL)
RES 7,A
SET 0,B
SET 0,C
SET 0,D
SET 0,E
SET 0,H
SET 0,L
SET 0,(HL)
SET 0,A
SET l,B
SET i .c
SET 1,D
SET l,E
SET 1.H
SET l.L
SET 1,(HL)
SET l.A
SET 2,B
SET 2,C
SET 2,D
SET 2,E
SET 2,H
SET 2.L
SET 2,(HL)
SET 2,A
SET 3,B
SET 3,C
SET 3,D
SET 3,E
SET 3,H ,
SET 3,L
SET 3|(HL)
SET 3,A
SET 4,B
SET 4,C
SET 4,D
SET 4,E
SET 4,H
SET 4,L
SET 4,(HL)
SET 4,A
SET 5,B
SET 5,C
SET 5,D
SET 5,E
SET 5,H
SET 5,L
SET 5,(HL)
SET 5,A
SET 6,B
SET 6jC
SET 6,D
SET 6,E

D-4

fritz
Notiz
Page D-3 is missing

— — — — — *mem

OBJECT CODE SOURCE CODE O BJECT CODE SOURCE CODE
CBF4 SET 6,H DD2874 JAF 77H
CBF5 SET 6,L DD29 ADD IX,IX
CBF6 SET 6,(HL) DD2A4433 LD IX,(3344H)
CBF7 SET 6, A DD2A4433 LDW IX,(3344H)
CBF8 SET 7,B DD2B DEC IX
CBF9 SET 7,C DD2B DECW IX
CBFA SET 7,D DD2C INC IXL
CBFB SET 7,E DD2D DEC IXL
CBFC SET 7,H DD2E66 LD IXL.66H
CBFD SET 7,L DD31221144 LDW (PC+1122H),3344H.
CBFE SET 7,(HL) DD3322U INCW (PC+1122H)
CBFF SET 7,A DD3455 INC (IX+55H)
CC4433 CALL Z.3344H DD3555 DEC (IX+55H)
CD4433 CALL 3344H DD365566 LD (IX+55H),66H
CE66 , ADC A,66H DD39 ADD IX,SP
CF RST 08H DD3B2211 DECW (PC+1122H)
DO RET NC DD3C4433 INC (3344H)
D1 POP DE DD3D4433 DEC (3344H)
D24433 JP NC.3344H DD3E443366 LD (3344H),66H
D366 OUT (66H),A DD44 LD . B.IXH
D44433 CALL NC.3344H DD45 LD B.IXL

f * • * ~ r

D5 PUSH DE DD4655 * LD B,(IX+55H)
D666 SUB A.66H DD4C LD C.IXH
D7 RST 10H DD4D LD C.IXL
D8 RET C DD4E55 LD C,(IX+55H)
D9 EXX DD54 LD D,IXH
DA4433 JP C.3344H DD55 LD D,IXL
DB66 IN A,(66H) DD5655 LD D,(IX+55H)
DC4433 CALL C.3344H DD5C LD E.IXH
DD014433 LDW (HL),3344H DD5D LD E.IXL
DD03 INCW (HL) DD5E55 LD E,(IX+55H)
DD042211 INC (SP+1122H) DD60 LD IXH.B
DD052211 DEC (SP+1122H) DD61 LD IXH,C
DD06221166 LD (SP+1122H),66H DD62 LD IXH.D
DD09 ADD IX,BC DD63 LD IXH,E
DDOB DECW (HL) DD64 LD IXH,IXH
DDOC INC (HL+IX) DD65 LD IXH,IXL
DDOD DEC (HL+IX) DD6655 LD H,(IX+55H)
DD0E66 LD (HL+IX),66H DD67 LD IXH,A
DD1144339988 LDW (3344H),8899H DD68 . LD IXL.B . ,
DD134433 INCW (3344H) DD69 LD IXL.C
DD14 INC (HL+IY) DD6A LD IXL,D
DD15 DEC (HL+IY) DD6B LD IXL,E
DD1666 LD (H L+IY), 66H DD6C LD IXL,IXH
DD19 ADD IX,DE DD6D LD IXL,IXL
DD1B4433 DECW (3344H) DD6E55 LD L,(IX+55H)
DD1C INC (IX+IY) DD6F LD IXL,A
DD1D DEC (IX+IY) DD7055 LD (IX+55H),B
DD1E66 LD (IX + IY), 66H DD7155 LD (IX+55H),C
DD2074 JAR 77H DD7255 LD (IX+55H),D
DD214433 LD IX,3344H DD7355 LD (IX+55H),E
DD214433 LDA IX, (3344H) DD7455 LD (IX+55H),H
DD214433 LDW IX.3344H DD7555 LD (IX+55H),L
DD224433 LD (3344H),IX DD7755 LD (IX+55H),A
DD224433 LDW (3344H),IX DD782211 LD A,(SP+1122H)
DD23 INC IX DD79 LD A ,(H L+ IX)
DD23 INCW IX DD7A LD A ,(H L+ IY)
DD24 INC IXH DD7B LD A ,(IX + IY)
DD25 DEC IXH DD7C LD A,IXH
DD2666 LD IXH.66H DD7D LD A,IXL

D-5

OBJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
DD7E55 LD A,(IX+55H) DDBB CP A ,(IX + IY)
DD802211 ADD A,(SP+1122H) DDBC CP A.IXH
DD81 ADD A,(H L+IX) DDBD CP A.IXL
DD82 ADD A,(H L+IY) DDBE55 CP A,(IX+55H)
DD83 ADD A ,(IX + IY) DDBF4433 CP A,(3344H)
DD84 ADD A.IXH DDC1 POP (HL)
DD85 ADD A.IXL DDC2 JP NZ.(HL)
DD8655 ADD A,(IX+55H) DDC4 CALL NZ.(HL)
DD874433 ADD A,(3344H) DDC5 PUSH (HL)
DD882211 ADC A,(SP+1122H) DDCA JP Z.(HL)
DD89 ADC A ,(H L+IX) DDCB5506 RLC (IX+55H)
DD8A ADC A ,(H L+IY) DDCB550E RRC (IX+55H)
DD8B ADC A ,(IX + IY) DDCB5516 RL (IX+55H)
DD8C ADC A.IXH DDCB551E RR (IX+55H)
DD8D ADC A.IXL DDCB5526 SLA (IX+55H)
DD8E55 ADC A,(IX+55H) DDCB552E SRA (IX+55H)
DD8F4433 ADC A,(3344H) DDCB5536 TSET (IX+55H)
DD902211 SUB A,(SP+1122H) DDCB553E SRL (IX+55H)
DD91 SUB A,(H L+IX) DDCB5546 BIT 0,(IX+55H)
DD92 SUB A,(H L+IY) DDCB554E BIT 1,(IX+55H)
DD93 SUB A ,(IX + IY) DDCB5556 BIT 2,(IX+55H)
DD94 SUB A.IXH DDCB555E BIT 3,(IX+55H)
DD95 SUB A.IXL DDCB5566 BIT 4,(IX+55H)
DD9655 SUB A,(IX+55H) DDCB556E IT 5,(IX+55H)
DD974433 SUB A,(3344H) DDCB5576 BIT 6,(IX+55H)
DD982211 SBC A,(SP+1122H) DDCB557E BIT 7,(IX+55H)
DD99 SBC A,(H L+IX) DDCB5586 RES 0,(IX+55H)
DD9A SBC A ,(H L+IY) DDCB558E RES 1,(IX+55H)
DD9B SBC A ,(IX + IY) DDCB5596 RES 2,(IX+55H)
DD9C SBC A.IXH DDCB559E RES 3,(IX+55H)
DD9D SBC A.IXL DDCB55A6 RES 4,(IX+55H)
DD9E55 SBC A,(IX+55H) DDCB55AE RES 5,(IX+55H)
DD9F4433 SBC A,(3344H) DDCB55B6 RES 6,(IX+55H)
DDA02211 AND A,(SP+1122H) DDCB55BE RES 7,(IX+55H)
DDA1 AND A,(H L+IX) DDCB55C6 SET 0,(IX+55H)
DDA2 AND A. (HL-f-l Y) DDCB55CE SET l.(IX + 5 5 H)

)̂̂ V3 a. ■ f ; i av . . • ' - AND A ,(IX + IY) DDCB55D6 ,- SET 2,(IX+55H)
DDA4 AND A.IXH DDCB55DE SET 3,(IX+55H)
DDA5 AND A.IXL DDCB55E6 SET 4,(IX+55H)
DDA655 AND A,(IX+55H) DDCB55EE SET 5,(IX+55H)
DDA74433 AND A,(3344H) DDCB55F6 SET 6,(IX+55H)
DDA82211 XOR A,(SP+1122H) DDCB55FE SET 7,(IX+55H)
DDA9 XOR A,(H L+IX) DDCC CALL Z.(HL)
DDAA XOR A,(H L+IY) DDCD CALL (HL)
DDAB XOR A.(IX-hlY) DDD14433 POP (3344H)
DDAC XOR A.IXH DDD2 JP NC.(HL)
DDAD XOR A.IXL DDD4 CALL NC.(HL)
DDAE55 XOR A,(IX+55H) DDD54433 PUSH (3344H)
DDAF4433 XOR A,(3344H) DDDA JP C,(HL)
DDB02211 OR A,(SP+1122H) DDDC CALL C.(HL)
DDB1 OR A,(H L+IX) DDE1 POP IX
DDB2 OR A ,(H L+IY) DDE2 JP PO.(HL)
DDB3 OR A ,(IX + IY) DDE3 EX (SP).IX
DDB4 OR A.IXH DDE4 CALL PO.(HL)
DDB5 OR A.IXL DDE5 PUSH IX
DDB655 OR A,(IX+55H) DDE9 JP (IX)
DDB74433 OR A,(3344H) DDEA JP PE.(HL)
DDB82211 CP A,(SP+1122H) DDEB EX IX.HL
DDB9 CP A ,(H L+IX) DDEC CALL PE.(HL)
DDBA CP A ,(H L+IY) DDED022211 LDA IX,(SP+1122H)

D-6

O BJECT CODE SOURCE CODE O BJECT CODE SOURCE CODE
DDED042211 LD IX,(SP+1122H) DDED3E55 LD (IX+55H),SP
DDED042211 LDW IX,(SP+1122H) DDED3E55 LDW (IX+55H),SP
DDED052211 LD (SP+1122H),IX DDED3F4433 EX A,(3344H)
DDED052211 LDW (SP+1122H),IX DDED402211 IN (SP+1122H),(C)
DDED0655 LD BC,(IX+55H) DDED412211 OUT (C),(SP+1122H)
DDED0655 LDW BC,(IX+55H) DDED42 SBC IX,BC
DDED072211 EX A,(SP+1122H) DDED48 IN (H L+IX),(C)
DDEDOA LDA IX ,(H L+IX) DDED49 OUT (C)i(H L+IX)
DDEDOC LD IX ,(H L+IX) DDED4A ADC IX.BC
DDEDOC LDW IX ,(H L+IX) DDED50 IN (HL+IY),(C)
DDEDOD LD (H L+IX),IX DDED51 OUT (C),(HL+IY)
DDEDOD LDW (H L + lx j jX DDED52 SBC IX.DE
DDED0E55 LD (IX+55H),BC DDED58 IN (IX+IY),(C)
DDEDOE55 LDW (IX+55H),BC DDED59 OUT (C),(IX+IY)
DDEDOF EX A,(H L+IX) DDED5A ADC IX, DE
DDED12 LDA IX, (HL+IY) DDED60 IN IXH,(C)
DDED14 LD IX ,(H L+IY) DDED61 OUT (C),IXH
DDED14 LDW IX ,(H L+IY) DDED62 SBC IX,IX
DDED15 LD (H L+IY),IX DDED66 LDCTL IX,(C)
DDED15 LDW (H L+IY),IX DDED68 IN IXL,(C)
DDED1655 LD

1 t . -w »• •
DE,(IX+55H) , . ; DDED69

•» J-V v .4 0 < - • * •
OUT (C),IXL

DDED1655 LDW DE,(IX+55H) DDED6A ADC IX,IX
DDED17 EX A,(H L+IY) DDED6D ADD IX,A
DDED1A LDA IX ,(IX+ IY) DDED6E LDCTL (C),IX
DDED1C LD IX ,(IX+ IY) DDED72 SBC IX,SP
DDED1C LDW IX ,(IX+ IY) DDED784433 IN (3344H),(C)
DDED1D LD (IX + IY),IX DDED794433 OUT (C),(3344H)
DDED1D LDW (IX +IY),IX DDED7A ADC IX,SP
DDED1E55 LD (IX+55H),DE DDED8655 LDUD A,(IX+55H)
DDED1E55 LDW (IX+55H),DE DDED87 LDCTL IX.USP
DDED1F EX A ,(IX + IY) DDED8E55 LDUD (IX+55H),A
DDED222211 LDA IX,(PC+1122H) DDED8F LDCTL USP,IX
DDED242211 LD IX,(PC+1122H) DDED9655 LDUP A,(IX+55H)
DDED242211 LDW IX,(PC+1122H) DDED9E55 LDUP (IX+55H),A
DDED252211 LD (PC+1122H),IX DDEDC02211 MULT A,(SP+1122H)
DDED252211 LDW (PC+1122H),IX DDEDC12211 MULTU A,(SP+1122H)
DDED2655 LD HL,(IX+55H) DDEDC2 MULTW HL.(HL)
DDED2655 LDW HL,(iX+55H) DDEDC3 MULTUW HL,(HL)
DDED27 EX A.IXH DDEDC42211 DIV HL,(SP+1122H)
DDED2A2211 LDA IX,(IX+1122H) DDEDC52211 DIVU HL,(SP+1122H)
DDED2C2211 LD IX,(IX+1122H) DDEDC6 ADDW HL,(HL)
DDED2C2211 LDW IX,(IX+1122H) DDEDC7 CPW HL,(HL)
DDED2D2211 LD (IX+1122H),IX DDEDC8 MULT A,(H L+IX)
DDED2D2211 LDW (IX+1122H),IX DDEDC9 MULTU A ,(H L+IX)
DDED2E55 LD (IX+55H),HL DDEDCA DIVW DEHL,(HL)
DDED2E55 LDW (IX+55H),HL DDEDCB DIVUW DEHL,(HL)
DDED2F EX A.IXL DDEDCC DIV HL,(HL+IX)
DDED322211 LDA IX,(IY+1122H) DDEDCD DIVU HL,(HL+IX)
DDED342211 LD IX,(IY+1122H) DDEDCE

•
SUBW HL,(HL)

DDED342211 LDW IX,(IY+1122H) DDEDDO MULT A,(H L+IY)
DDED352211 LD (IY+1122H),IX DDEDD1 MULTU A ,(H L+IY)
DDED352211 LDW (IY+1122H),IX DDEDD24433 MULTW HL,(334
DDED3655 LD SP,(IX+55H) DDEDD34433 MULTUW HL,(334
DDED3655 LDW SP,(IX+55H) DDEDD4 DIV HL,(HL+IY)
DDED3755 EX A,(IX+55H) DDEDD5 DIVU HL,(HL+IY)
DDED3A2211 LDA IX,(HL+1122H) DDEDD64433 ADDW HL,(3344H)
DDED3C2211 LD IX,(HL+1122H) DDEDD74433 CPW HL,(3344H)
DDED3C2211 LDW IX,(HL+1122H) DDEDD8 MULT A ,(IX + IY)
DDED3D2211 LD (HL+1122H),IX DDEDD9 MULTU A ,(IX + IY)
DDED3D2211 LDW (HL+1122H),IX DDEDDA4433 DIVW DEHL,(3344H)

D-7

OBJECT CODE SOURCE CODE OBJECT CODE SO URCE CODE
DDEDDB4433 DIVUW DEHL,(3344H) ED042211 LDW HL,(SP+1122H)
DDEDDC DIV H L,(IX+IY) ED052211 LD (SP+1122H),HL
DDEDDD DIVU H L,(IX +IY) ED052211 LDW (SP+1122H),HL
DDEDDE4433 SUBW HL,(3344H) ED06 LD BC.(HL)
DDEDEO MULT A.IXH ED06 LDW b c .(h l)
DDEDE1 M ULTUA.IXH ED07 .

EDOA '
EX A.B

DDEDE2 MULTW HL.IX LDA H L.(H L-flX)
DDEDE3 MULTUW HL,IX EDOB LD (H L+ IX),A
DDEDE4 DIV HL.IXH EDOC LD H L,(H L+IX)
DDEDE5 DIVU HL.IXH EDOC LDW H L,(H L+IX)
DDEDE6 ADDW HL.IX EDOD LD (H L+IX),H L
DDEDE7 CPW HL.IX EDOD LDW' (H L+IX),H L
DDEDE8 MULT A.IXL EDOE LD (HL).BC
DDEDE9 M ULTUA.IXL EDOE LDW (HL).BC
DDEDEA DIVW DEHL.IX EDOF EX A.C
DDEDEB DIVUW DEHL.IX ED12 LDA H L,(H L+IY)
DDEDEC DIV HL.IXL ED13 LD (H L+ IY),A
DDEDED DIVU HL.IXL ED14 LD H L,(H L+IY)
DDEDEE SUBW HL.IX ED14 LDW H L,(H L+IY)
DDEDF055 MULT A,(IX+55H) ED15 LD (H L+IY),H L
DDEDF155 MULTU A,(IX+55H) ED15 LDW (H L+IY),H L
DDEDF22211 MULTW HL,(PC+1122H) ED16 LD DE.(HL)
DDEDF32211 MULTUW HL,(PC+1122H ED16 LDW DE.(HL)
DDEDF455 DIV HL,(IX+55H) ED17 EX A.D
DDEDF555 DIVU HL,(IX+55H) ED1A LDA H L,(IX + IY)
DDEDF62211 ADDW HL,(PC+1122H) ED1B LD (IX + IY),A
DDEDF72211 CPW HL,(PC+1122H) ED1C LD H L.(IX + IY)
DDEDF84433 MULT A,(3344H) ED1C LDW H L,(IX +IY)
DDEDF94433 MULTU A,(3344H) ED1D LD (IX-hlY).HL
DDEDFA2211 DIVW DEHL,(PC+1122H) ED1D LDW (IX +IY),H L
DDEDFB2211 DIVUW DEHL,(PC+1122H) ED1E LD (h l) .d e

DDEDFC4433 DIV HL,(3344H) ED1E LDW (HL).DE
DDEDFD4433 DIVU HL,(3344H) ED1F EX A.E
DDEDFE2211 SUBW HL,(PC+1122H) ED222211 LDA HL,(PC+1122H)
DDF12211 POP (PC+1122H) ED232211 LD (PC+1122H),A
DDF2 JP P.(HL) ED242211 LD HL,(PC+1122H)
DDF4 ~ CALL P,(HL) 1 ED242211 * LDW HL.(PC+1122H)
DDF52211 PUSH (PC+1122H) ED252211 LD (PC+1122H),HL
DDF9 LDW SP.IX ED252211 LDW (PC+1122H).HL
DDF9 LD SP.IX ED26 LD HL.(HL)
DDFA JP M,(HL) ED26 LDW HL.(HL)
DDFC CALL M.(HL) ED27 EX A.H
DE66 SBC A.66H ED2A2211 LDA HL,(IX+1122H)
DF RST 18H ED2B2211 LD (IX+1122H),A
EO RET PO ED2C2211 LD HL,(IX+1122H)
E l POP HL ED2C2211 LDW HL,(IX+1122H)
E24433 JP P0.3344H ED2D2211 LD (IX+1122H),HL
E3 EX (SP).HL ED2D2211 LDW (IX+1122H),HL
E44433 CALL P0.3344H ED2E LD (HL).HL
E5 PUSH HL ED2E LDW (HL).HL
E666 AND A.66H ED2F EX A.L
E7 RST 20H ED322211 LDA HL,(IY+1122H)
E8 RET PE ED332211 LD (IY+1122H),A
E9 JP (HL) ED342211 LD HL,(IY+1122H)
EA4433 JP PE.3344H ED342211 LDW HL,(IY+1122H)
EB EX DE.HL ED352211 LD (IY+1122H).HL
EC4433 CALL PE.3344H ED352211 LDW (IY+1122H),HL
ED022211 LDA HL,(SP+1122H) ED36 LD SP.(HL)
ED032211 LD (SP+1122H),A ED36 LDW SP.(HL)
ED042211 LD HL,(SP+1122H) ED37 EX A.(HL)

D-8

O BJECT CODE SOURCE CODE O BJECT CODE SOURCE CODE
ED3A2211 LDA HL,(HL+1122H) ED7766 Dl 66H
ED3B2211 LD (HL+1122H),A ED78 IN A.(C)
ED3C2211 LDW HL,(HL+1122H) ED79 OUT (C).A
ED3D2211 LD (HL+1122H),HL ED7A ADC HL.SP
ED3D2211 LDW (HL+1122H),HL ED7B4433 LD SP,(3344H)
ED3E LD (HL),SP ED7B4433 LDW SP,(3344H)
ED3E LDW (HL),SP ED7F66 El 66H
ED3F EX A,A ED82 INIW
ED40 IN B.(C) ED83 OUTIW
ED41 OUT (C),B ED842211 EPUM (SP+1122H)
ED42 SBC HL.BC ED852211 MEPU (SP+1122H)
ED434433 LD (3344H),BC ED86 LDUD a ,(h l)
ED434433 LDW (3344H),BC ED87 LDCTL HL.USP
ED44 NEG A ED8A INDW
ED45 RETN ED8B ir. OUTDW
ED46 IM 0 ED8C EPUM (H L+IX)
ED47 LD I.A ED8D MEPU (H L+IX)
ED48 IN C.(C) ED8E LDUD (h l) ,a
ED49 OUT (C),c ED8F LDCTL USP.HL
ED4A ADC HL.BC ED92 INIRW
ED4B4433

t \ \ '
LD

' ’ * .1 j • « *■*
BC,(3344H) ED93 OTIRW

ED4B4433
l \ A l

LDW BC,(3344H) ED94 EPUM (H L+IY)
ED4C NEG HL ED95 MEPU (H L+IY)
ED4D RETI ED96 LDUP a ,(h l)
ED4E IM 3 ED97 EPLF
ED4F LD R,A ED9A INDRW
ED50 IN D,(C) ED9B OTDRW
ED51 OUT (C),D ED9C EPUM (IX + IY)
ED52 SBC HL.DE ED9D MEPU (IX -flY)
ED534433 LD (3344H),DE ED9E LDUP (HL),A
ED534433 LDW (3344H),DE ED9F EPU
ED55 RETIL EDAO LDI
ED56 IM 1 EDA1 CPI
ED57 LD A,l EDA2 INI
ED58 IN E,(C) EDA3 OUTI
ED59 OUT (C),E EDA42211 EPUM (PC+1122H)
ED5A ADC HL.DE EDA52211 MEPU (PC+1122H)
ED5B4433 LD DE,(3344H) EDA6 EPUM (HL)
ED5B4433 LDW DE,(3344H) EDA74433 EPUM (3344H)
ED5E IM 2 EDA8 LDD
ED5F LD A.R EDA9 CPD
ED60 IN H»(C) EDAA IND
ED61 OUT (C),H EDAB OUTD
ED62 SBC HL.HL EDAC2211 EPUM (IX+1122H)
ED64 EXTS A EDAD2211 MEPU (IX+1122H)
ED65 PCACHE EDAE MEPU (HL)
ED66 LDCTL HL,(C) EDAF4433 MEPU (3344H)
ED67 RRD EDBO LD R
ED68 IN Li(C) EDB1

m
CPIR

ED69 OUT (C).L EDB2 IN IR
ED6A ADC HL.HL EDB3 OTIR
ED6C EXTS HL EDB42211 EPUM (IY+1122H)
ED6D ADD HL,A EDB52211 MEPU (IY+1122H)
ED6E LDCTL■ (C),HL EDB7 IN HL,(C)
ED6F RLD EDB7 INW HL,(C)
ED70 TSTI (C) EDB8 LDDR
ED714433 SC 3344H EDB9 CPDR
ED72 SBC HL.SP EDBA INDR
ED734433 LD (3344H),SP EDBB OTDR
ED734433 LDW (3344H),SP EDBC2211 EPUM (HL+1122H)

D-9

O BJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
EDBD2211 MEPU (HL+1122H) EDFB DIVUW DEHL.SP
EDBF OUT (C),HL EDFC DIV HL.A
EDBF OUTW (C),HL EDFD DIVU HL,A
EDCO MULT A,B EDFE SUBW HL.SP
EDC1 M ULTUA.B EE66 XOR A,(i6H
EDC2 MULTW HL.BC EF RST 28H
EDC3 MULTUW HL.BC FO RET P
EDC4 DIV HL,B F I POP AF
EDC5 DIVU HL,B F24433 JP P.3344H
EDC6 ADDW HL.BC F3 Dl
EDC7 CPW HL.BC F44433 CALL P.3344H
EDC8 MULT A.C F5 PUSH AF
EDC9 M ULTUA.C F666 OR A,(>6H
EDCA DIVW DEHL.BC F7 RST 30H
EDCB DIVUW DEHL.BC F8 RET M
EDCC DIV HL,C F9 LDW SP.HL
EDCD DIVU HL,C F9 LD SP.HL
EDCE SUBW HL.BC , FA4433 JP „. M.3344H
EDDO MULT A.D FB El
EDD1 M ULTUA.D FC4433 CALL M.3344H
EDD2 MULTW HL.DE FD032211 INCW (IX+1122H)
EDD3 MULTUW HL.DE FD042211 INC (PC+1122H)
EDD4 DIV HL,D FD052211 DEC (PC+1122H)
EDD5 DIVU HL.D FD06221166 LD (PC+1122H),66H
EDD6 ADDW HL.DE FD09 ADD IY,BC
EDD7 CPW HL.DE FD0B2211 DECW (IX+1122H)
EDD8 MULT A.E FD0C2211 INC (IX+1122H)
EDD9 M ULTUA.E FD0D2211 DEC (IX+1122H)
EDDA DIVW DEHL.DE FD0E221166 LD (IX+1122H),66H
EDDB DIVUW DEHL.DE FD132211 INCW (IY+1122H)
EDDC DIV HL,E FD142211 INC (IY+1122H)
EDDD DIVU HL,E FD152211 DEC (IY+1122H)
EDDE SUBW HL.DE FD16221166 LD (IY+1122H),66H
EDEO MULT A.H FD19 ADD IY.DE
EDE1 M ULTUA.H FD1B2211 DECW (IY+1122H)
EDE2 MULTW HL.HL FD1C2211 INC (HL+1122H)
EDE3 » -. ' • ' MULTUW HL.HL FD1D2211 DEC (HL+1122H)
EDE4 DIV HL.H FD1E221166 LD (HL+1122H),66H
EDE5 DIVU HL,H FD214433 LD IY.3344H
EDE6 ADDW HL.HL FD214433 LDA IY,(3344H)
EDE7 CPW HL.HL FD214433 LDW IY.3344H
EDE8 MULT A.L FD224433 LD (3J44H) ,1Y
EDE9 M ULTUA.L FD224433 .., LDW (3344H),IY
EDEA DIVW DEHL.HL FD23 INC IY
EDEB DIVUW DEHL.HL FD23 INCW IY
EDEC DIV HL.L FD24 INC IYH
EDED DIVU HL.L FD25 DEC IYH
EDEE SUBW HL.HL FD2666 LD IYH.66H
EDEF EX H.L FD29 ADD IY.IY
EDFO MULT A,(HL) FD2A4433 LDW IY,(3344H)
EDF1 M ULTUA.(HL) FD2B DEC IY
EDF2 MULTW HL.SP FD2B DECW IY
EDF3 MULTUW HL.SP FD2C INC IYL
EDF4 DIV HL.(HL) FD2D DEC IYL
EDF5 DIVU HL.(HL) FD2E66 LD IYL.66H
EDF6 ADDW HL.SP FD3455 INC (IY+55H)
EDF7 CPW HL.SP FD3555 DEC (IY+55H)
EDF8 MULT A,A FD365566 LD (IY+55H),66H
EDF9 M ULTUA.A FD39 ADD IY,SP
EDFA DIVW DEHL.SP FD44 LD B.1YH

< •

D-10

O BJECT CODE SOURCE CODE OBJECT CODE SOUFiCE CODE
FD45 LD B.IYL FD95 SUB A.IYL
FD4655 LD B,(IY+55H) FD9655 SUB A,(IY+55H)
FD4C LD C.IYH FD982211 SBC A,(PC+1122H)
FD4D LD C,IYL FD992211 SBC A.(IX+1122H)
FD4E55 LD C,(IY+55H) FD9A22U t SBC A,(IY+1122H)
FD54 LD D.IYH FD9B2211 SBC A,(HL+1122H)
FD55 LD D,IYL FD9C SBC A.IYH
FD5666 LD D,(IY+55H) FD9D SBC A.IYL
FD5C LD E.IYH FD9E55 SBC A,(IY+55H)
FD5D LD E.IYL FDA02211 AND A,(PC+1122H)
FD5E55 LD E,(IY+55H) FDA12211 AND A,(IX+1122H)
FD60 LD IYH.B FDA22211 AND A,(IY+1122H)
FD61 LD IYH,C FDA32211 AND A,(HL+1122H)
FD62 LD IYH.D FDA4 AND A.IYH
FD63 LD IYH,E FDA5 AND A.IYL
FD64 LD IYH.IYH FDA655 AND A,(IY+55H)
FD65 LD IYH.IYL FDA82211 XOR A,(PC+1122H)
FD6655 LD H,(IY+55H) FDA92211 XOR A,(IX+1122H)
FD67 LD IYH.A FDAA2211 XOR A,(IY+1122H)
FD68 LD IYL,B FDAB2211 XOR A,(HL+1122H)
FD69 LD IYL.C , FDAC . , XOR A.IYH
FD6A LD IYL.D FDAD XOR A.IYL
FD6B LD IYL.E FDAE55 XOR A,(IY+55H)
FD6C LD IYL.IYH FDB02211 OR A,(PC+1122H)
FD6D LD IYL.IYL FDB12211 OR A,(IX+1122H)
FD6E55 LD L,(IY+55H) FDB22211 OR A,(IY+1122H)
FD6F LD IYL.A FDB32211 OR A,(HL+1122H)
FD7055 LD (IY+55H),B FDB4 OR A.IYH
FD7155 LD (IY+55H),C FDB5 OR A.IYL
FD7255 LD (IY+55H),D FDB655 OR A,(IY+55H)
FD7355 LD (IY+55H),E FDB82211 CP A,(PC+1122H)
FD7455 LD (IY+55H),H FDB92211 CP A,(IX+1122H)
FD7555 LD (IY+55H),L FDBA2211 CP A,(IY+1122H)
FD7755 LD (IY+55H),A FDBB2211 CP A,(HL+1122H)
FD782211 LD A,(PC+1122H) FDBC CP A.IYH
FD792211 LD A,(IX+1122H) FDBD CP A.IYL
FD7A2211 LD A,(IY+1122H) FDBE55 CP A ,(IY -f 55H)
FD7B22U LD A,(HL+1122H) FDC22211 JP NZ,(PC+1122H)
FD7C LD A.IYH FDC32211 JP (PC+1122H)
FD7D LD A,IYL - FDC42211 - . . CALL NZ,(PC+1122H)
FD7E55 LD A,(IY+55H) FDCA2211 JP Z,(PC+1122H)
FD802211 ADD A,(PC+1122H) FDCB5506 RLC (IY+55H)
FD812211 ADD A,(!X+1122H) FDCB550E RRC (IY+55H)
FD822211 ADD A,(IY+1122H) FDCB5516 RL (IY+55H)
FD832211 ADD A,(HL+1122H) FDCB551E RR (IY+55H)
FD84 ADD A.IYH FDCB5526 SLA (IY+55H)
FD85 ADD A.IYL FDCB552E SRA (IY+55H)
FD8655 ADD A,(IY+55H) FDCB5536 TSET (IY+55H)
FD882211 ADC A,(PC+1122H) FDCB553E SRL (IY+55H)
FD892211 ADC A,(IX+1122H) FDCB5546 BIT 0,(IY+55H)
FD8A2211 ADC A,(IY+1122H) FDCB554E BIT 1,(IY+55H)
FD8B2211 ADC A,(HL+1122H) FDCB5556 BIT 2,(IY+55H)
FD8C ADC A.IYH FDCB555E BIT 3,(IY+55H)
FD8D ADC A.IYL FDCB5566 BIT 4.(IY+55H)
FD8E55 ADC A,(IY+55H) FDCB556E BIT 5,(IY+55H)
FD902211 SUB A,(PC+1122H) FDCB5576 BIT 6,(IY+55H)
FD912211 SUB A,(IX+1122H) FDCB557E BIT 7,(IY+55H)
FD922211 SUB A.(IY+1122H) FDCB5586 RES 0,(IY+55H)
FD932211 SUB A,(HL+1122H) FDCB558E RES 1,(IY+55H)
FD94 SUB A.IYH FDCB5596 RES 2,(IY+55H)

D—11

O BJECT CODE SOURCE CODE OBJECT CODE SOURCE CODE
FDCB559E RES 3,(IY+55H) FDED222211 LDA IY,(PC+1122H)
FDCB55A6 RES 4,(IY+55H) FDED242211 LD IY J(PC +U22H)
FDCB55AE RES 5,(IY+55H) FDED242211 LDW IY,(PC+1122H)
FDCB55B6 RES 6.0YH-55H) FDED252211 LD (PC+1122H),IY
FDCB55BE RES 7,(IY+55H) FDED252211 LDW (PC+1122H),IY
FDCB55C6 SET 0,(IY+55H) FDED2655 LD HL,(IY+55H)
FDCB55CE SET 1,(IY+55H) FDED2655 LDW HL,(IY+55H)
FDCB55D6 SET 2,(IY+55H) FDED27 EX A.IYH
FDCB55DE SET 3,(IY+55H) FDED2A22U LDA IY,(IX+1122H)
FDCB55E6 SET 4,(IY+55H) FDED2C2211 LD IY,(IX+1122H)
FDCB55EE SET 5,(IY+55H) FDED2C2211 LDW IY ,(IX +U 22H)
FDCB55F6 SET 6,(IY+55H) FDED2D2211 LD (IX+1122H),IY
FDCB55FE SET 7,(IY+55H) FDED2D2211 LDW (IX+1122H),IY
FDCC2211 CALL Z,(PC+1122H) FDED2E55 LD (IY+55H),HL
FDCD2211 CALL (PC+1122H) FDED2E55 LDW (IY+55H),HL
FDD22211 JP NC,(PC+1122H) FDED2F EX A.IYL
FDD42211 CALL NC,(PC+1122H) FDED322211 LDA IY ,(IY +U 22H)
FDDA2211 JP C,(PC+1122H) FDED342211 LD IY,(IY+1122H)
FDDC2211 CALL C,(PC+1122H) FDED342211 LDW IY,(IY+1122H)
FDE1 POP IY FDED352211 LD |IY+1122H),IY
FDE22211 JP PO,(PC+1122H) FDED352211 LDW |IY+1122H),IY
FDE3 EX (SP) ,1Y FDED3655 LD SP,(IY+55H)
FDE42211 CALL PO ,(PC+U22H) FDED3655 LDW SP,(IY+55H)
FDE5 PUSH IY FDED3755 EX A,(IY+55H)
FDE9 JP (IY) FDED3A2211 LDA IY,(HL+1122H)
FDEA2211 JP PE,(PC+1122H) FDED3C2211 LD IY,(HL+1122H)
FDEB EX IY.HL FDED3C2211 LDW IY,(HL+1122H)
FDEC2211 CALL PE,(PC+1122H) FDED3D2211 LD (HL+1122H),IY
FDED022211 LDA IY ,(SP+U 22H) FDED3D2211 LDW (H L+U 22H),IY
FDED042211 LD IY,(SP+1122H) FDED3E55 LD (IY+55H),SP
FDED042211 LDW IY ,(SP+U 22H) FDED3E55 LDW (IY+55H),SP
FDED052211 LD (SP+1122H),IY FDED4022U IN (PC +U22H),(C)
FDED052211 LDW (SP+1122H),IY FDED412211 OUT (C),(PC +U 22H)
FDED0655 LD BC,(IY+55H) FDED42 SBC IY.BC
FDED0655 LDW BC,(IY+55H) FDED482211 IN (IX +U 22H),(C)
FDED072211 EX A,(PC+1122H) FDED492211 OUT (C)I(IX+1122H)
FDEDOA LDA

> i 'v i.
. 1Y , (HL-f-IX) FDED4A , ADC IY.BC

FDEDOC LD IY ,(H L+IX) FDED502211 IN (IY+1122H),(C)
FDEDOC LDW IY ,(H L+IX) FDED512211 OUT (C),(IY +U 22H)
FDEDOD LD (H L+IX),IY FDED52 SBC IY.DE
FDEDOD LDW (H L+IX),IY FDED582211 IN (HL+1122H),(C)
FDEDOE55 LD (IY+55H),BC FDED592211 OUT (C),(H L+U 22H)
FDED0E55 LDW (IY+55H),BC FDED5A ADC IY,DE
FDED0F2211 EX A,(IX+1122H) FDED60 IN IYH,(C)
FDED12 LDA IY ,(H L+IY) FDED61 OUT (C),IYH
FDED14 LD IY ,(H L+IY) FDED62 SBC IY.IY
FDED14 LDW IY ,(H L+IY) FDED66 LDCTL IV, (C)
FDED15 LD (H L+IY),IY FDED68 IN lYL.(C)
FDED15 LDW (H L+IY),IY FDED69 OUT (C),IYL
FDED1655 LD DE,(IY+55H) FDED6A ADC IY,IY
FDED1655 LDW DE,(IY+55H) FDED6D ADD IY,A
FDED172211 EX A ,(IY +U 22H) FDED6E LDCTL (C),IY
FDED1A LDA IY ,(IX + IY) FDED72 SBC IY,SP
FDED1C LD IY ,(IX + IY) FDED7A ADC IY, SP
FDED1C LDW IY ,(IX + IY) FDED8655 LDUD A,(IY+55H)
FDED1D LD (IX + IY),IY FDED87 LDCTL IY.USP
FDED1D LDW (IX+IY),IY FDED8E55 LDUD (l/+ 5 5 H),A
FDED1E55 LD (IY+55H),DE FDED8F LDCTL USP.IY
FDED1E55 LDW (IY+55H),DE FDED9655 LDUP A (IY+55H)
FDED1F2211 EX A,(HL+1122H) FDED9E55 LDUP (IY+55H),A

D-12
r

O BJECT CODE
FDEDC02211
FDEDC12211
FDEDC22211
FDEDC32211
FDEDC42211
FDEDC52211
FDEDC62211
FDEDC72211
FDEDC82211
FDEDC92211
FDEDCA2211
FDEDCB2211
FDEDCC2211
FDEDCD2211
FDEDCE2211
FDEDD02211
FDEDD12211
FDEDD22211
FDEDD32211
FDEDD42211
FDEDD52211
FDEDD62211
FDEDD72211
FDEDD82211
FDEDD92211
FDEDDA2211
FDEDDB2211
FDEDDC2211
FDEDDD2211
FDEDDE2211
FDEDEO
FDEDE1
FDEDE2
FDEDE3
FDEDE4

SOURCE CODE
M ULT A,(PC+1122H)
MULTU A,(PC+1122H)
MULTW HL,(IX+1122H)
MULTUW HL,(IX+1122H)
DIV HL,(PC+1122H)
DIVU HL,(PC+1122H)
ADDW HL,(IX+1122H)
CPW HL,(IX+1122H)
MULT A,(IX+1122H)
MULTU A,(IX+1122H)
DIVW DEHL,(IX+1122H)
DIVUW DEHL,(IX+1122H)
DIV HL,(IX+1122H)
DIVU HL,(IX+1122H)

OBJECT CODE
FDEDE5
FDEDE6
FDEDE7
FDEDE8
FDEDE9
FDEDEA
FDEDEB
FDEDEC
FDEDED
FDEDEE
FDEDF055
FDEDF155
FDEDF24433
FDEDF34433

SOURCE CODE
DIVU HL.IYH
ADDW HL,IY
CPW HL.IY
M ULT A,IYL
MULTU A,IYL
DIVW DEHL.IY
DIVUW DEHL.IY
DIV HL.IYL
DIVU HL.IYL
SUBW HL.IY
MULT A ,(IY+55H)
MULTU A ,(IY+55H)
MULTW HL.3344H
MULTUW HL.3344H

SUBW HL,(IX+1122H) * FDEDF455 DIV HL.(IY+55H)
M ULT A.(IY+1122H) FDEDF555 DIVU HL,(IY+55H)
MULTU A,(IY+1122H) FDEDF64433 ADDW HL.3344H
MULTW HL,(IY+1122H) FDEDF74433 CPW HL.3344H
MULTUW HL,(IY+1122H) FDEDF866 MULT A.66H
DIV HL,(IY+1122H) FDEDF966 MULTU A.66H
DIVU HL,(IY+1122H) FDEDFA4433 ., r rM .vK: DIVW DEHL.3344H
ADDW HL.(IY+1122H) FDEDFB4433 DIVUW DEHL.3344H
CPW HL,(IY+1122H) FDEDFC66 DIV HL.66H
M ULT A,(HL+1122H) FDEDFD66 DIVU HL.66H
MULTU A,(HL+1122H) FDEDFE4433 SUBW HL.3344H
DIVW DEHL,(IY+1122H) FDF22211 JP P,(PC+1122H)
DIVUW DEHL,(IY+1122H) , FDF42211 CALL P,(PC+1122H)
DIV HL,(HL+1122H) FDF54433 PUSH 3344H
DIVU HL,(HL+1122H) FDF9 LD SP.IY
SUBW HL,(IY+1122H) FDF9 LDW SP.IY
M ULT A.IYH FDFA2211 JP M,(PC+1122H)
MULTU A.IYH FDFC2211 CALL M,(PC+1122H)
MULTW HL.IY FE66 CP A.66H
MULTUW HL.IY FF RST 38H

«'V »'

DIV HL.IYH

) . r ■.

D -1 3

1

Appendix E.
Instruction Timing

The Z280 CPU processes instructions using a three-
stage pipeline consisting of an instruction
prefetch unit, an instruction decoder, and an
instruction execution unit. Each section of the
pipeline operates autonomously, communicating with
the other stages of the pipeline via handshakes
and local buses. The pipelined architecture of
the Z280 MPU greatly increases program throughput;
as one instruction is being executed, the next
instruction can be decoded, and the instruction
after that can be fetched.

, The autonomous operation of the three stages in
the Z280 CPU instruction pipeline makes it
difficult to calculate exact instruction execution
times. Furthermore, execution times are affected
by cache activity; the current cache contents
determine the number of external memory
transactions made during the fetch and execution
of a given instruction. In this appendix, three
types of tables are provided for calculation of
instruction timinqs: instruction execution timinq,
instruction fetch and decode timinq, and bus
transaction timing. All tables list execution and
transaction timings in terms of CPU clock cycles.

Tables E-1, E-2, and E-3 show the execution times
for all instructions and interrupt and trap
processing. Table E-1 lists the execution times
for all CPU-executed instructions, with the
instructions listed by functional group. Table
E-2 lists the execution times for the extended -
instructions. Table E-3 shows execution times for
interrupt and trap events. These tables assume
that the instruction has been fetched, decoded,
and is ready for execution, and that the bus is
idle when the execution unit makes a request for a
transaction. Thus, the execution times shown in
these tables represent the maximum execution rate
of the machine. The actual execution rate will be
somewhat lower than this maximum for two reasons: .
(1) the execution unit must compete with the
prefetch unit for use of the external bus, and (2)
some instructions may take longer to prefetch and
decode than the previous instruction will take to
execute.

Furthermore, the activity of the execution unit
can affect the prefetch unit wnen certain
instructions are executed. In Tables E-1 and E-2,
an MFM on the right-hand side of the table
indicates that the pipeline is flushed when that
instruction is executed; the pipeline is also
flushed durinq all interrupt and trap processing.

In these cases, the next instruction must be
completely fetched and decoded before the
execution unit can proceed. The execution times
in these tables do not include the time necessary
to fetch and decode the next instruction if the
pipeline is flushed.

In Tables E-1 through E-3, execution times are
given as the number of absolute CPU clock cycles
plus the number and type of bus transactions. Bus
transaction timings are shown separately in Tables
E-5 through E-10.

Table E-4 contains the instruction fetch and
decode timing, and Tables E-5 through E-10 show
bus transaction timings. The CPU clock is divided
by a factor of 1, 2, or 4 to form the bus clock;
thus, bus transaction timing depends on the
relationship between the CPU clock and bus clock.
All three types of bus timing are shown in the
tables. Furthermore, because of the different
phase relationships between the request for a
transaction and the bus clock, a variable number
of cycles is included in parentheses in Tables E-4
through E-10; the average would be half of the sum
of the minimum and maximum numbers listed in the
parentheses. The notation "w" in these tables
refers to the number of wait states added to the
transaction (either by assertinq the WAIT input or
by programming the appropriate CPU control
registers) in addition to any automatically
inserted wait states. Again, the numbers in these
tables assume that the bus is idle when the
transaction request is made.

E-1

Table E-1. Instruction Execution Times

Instruction Addressing Modes Execution Time

8-BIT LOAD GROUP

EX A,src src = R,RX,IR,DA,X.SX
RA.SR.BX

R,RX: 4
IR,DA,X,SX,RA.SR.BX: 5 + rd(src) - L wr(src)

EXH.L 4

LD dst.src dst = A •

src = R,RX,IM,IR,DA,X
SX, RA.SR.BX
(BC).(DE)

• R,RX: 2
IR.DA.X.SX,RA.SR.BX: 3 + rd(src)
(BC),(DE): 3 + rd(IR)

or

' '• 1 ’* / • * *

dst = R,RX,IR,DA,X
SX,RA.SR.BX
(BC).(DE)

" ' ' src = A

R.RX.IM: 2
IR,DA,X,SX,RA.SR.BX: 3 -1- wr(dst)
(BC),(DE): 3 + wr(IR)

* •* • • v » , v • * • * . % * v i .* * . * • . v , . • *' * . % •• • * • * « • »•% * | ; •* * *

LD dst.src dst = R
src = R.RX.IM,IR.SX

R.RX.IM: 2
IR.SX: 3 + rd(src)

or

dst = R,RX,IR,SX
src = R

R,RX: 2
IR.SX: 3 + wr(dst)

LD dst.n dst = R,RX,IR,DA,X,
SX, RA.SR.BX

R,RX: 2
IR,DA,X,SX,RA.SR.BX: 3 + wr(dst)

LDUD dst.src dst = A
src = IR.SX in user

3 + rd(src)

or t

dst = IR.SX in user
src = A

3 + wr(dst)

LDUP dst.src
. . 4 , - • i • *' v . t - - * y . - ' * - ? j . * * j r -* • v ‘ -•

dst = A
src = IR.SX in user - -

3 + rd(src)

or

dst = IR.SX in user
src = A

' 3 + wr(dst)

See Table E-1 Note on page E—10.

E-2

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

16-BIT LOAD GROUP

EXsrc.HL src = DE,IX,IY 5

EX (SP).dst dst = HL.IX.IY 5 + rd(IR) + wr(IR)

EX AF,AF' 2

EXX 2

LD[W]dst,src dst=HL,IX,IY
src = IM,DA,X,RA,SR,BX

IM: 2
DA,X,RA,SR,BX: 3 + rd(src)

or
•f- . dst = DA,X,RA,SFt,BX

src = HL,IX,IY
3 + wr(dst)

LD[W]dst,src dst = BC.DE.HL.SP
src = IM,IR,DA,SX

IM: 2
IR.DA.SX: 3 + rd(src)

or
- V * ‘ , - - - ■ • - ̂»* • » ■ ' ■*

dst = IR.DA.SX
src = BC,DE,HL,SP

3 + wr(dst)

LD[W]dst,nn dst = RR,IR.DA.RA RR: 2
IR.DA.RA: 3 + wr(dst)

LD[W] dst.nn dst - RR 2

LD[W] dst.src
V

dst = SP
src = HL.IX.IY.IM.IR.DA.SX

HL.IX.IY.IM: 2
IR.DA.SX: 3 + rd(src)

or

dst = IR.DA.SX
src = SP

3 + wr(dst)

LDA dst.src dst = HL,IX,IY
src = DA,X,RA,SR,BX

DA: 2
X.RA.SR: 5
BX: 6

POP dst dst = RR,IR.DA.RA
* , . t v .£ .« * *

RR: 9 + rd(IR)
IR.DA.RA: 9 + rd(IR) + wr(dst)

PUSH src src = RR,IM,IR.DA.RA RR.IM: 8 + wr(IR)
IR.DA.RA: 9 + rd(src) + wr(IR)

See Table E-1 Note on page E-10.

•

E-3

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

BLOCK TRANSFER AND SEARCH GROUP %

CPD 8 + rd(IR)

CPDR 8 + rd(IR), each iteration

CPI 8 + rd(IR)

CPIR
•

8 + rd(IR), each iteration

LDD 9 + rd(IR) + wr(IR)

LDDR 9 + rd(IR) + wr(IR), each iteration

LDI 9 + rd(IR) + wr(IR)

LDIR 9 + rd(IR) + wr(IR), each iteration

8-BIT ARITHMETIC AND LOGIC GROUP

ADC [A,]src src = R,RX,IM,IR,DA,
X,SX,RA,SR,BX

R.RX.IM: 2
IR,DA,X,SX,RA,SR,BX: 3 + rd(src)

ADD [A,]src src = R,RX,IM,IR,DA,
X,SX,RA,SR,BX

R,RX,IM: 2
IR,DA,X,SX,RA,SR,BX: 3 + rd(src)

AND [A,]src src = R.RX.IM,IR,DA,
X,SX,RA,SR,BX

R,RX,IM: 2
IR,DA,X)SX,RA,SR,BX: 3 + rd(src)

CP [A,]src src = R,RX,IM,IR,DA,
X,SX,RA,SR,BX

R.RX.IM: 2
IR,DA,X,SX,RA,SR,BX: 3 -I- rd(src)

CPL [A] 2

DAA[A] 3

DEC dst dst = R,RXIIR,DA,Xf
SX,RA,SR,BX

R,RX: 3
IR,DA,X,SX,RA,SR,BX: 4 + rd(dst) + wr(dst)

DIV[HL,]src
. . ' * .1 N "* • * • V • • • .*• . • . r; * . - ’ ‘,

src = R,RX,IM,DA,X,
SX,RA,SR,BX* > \> % , . ■**

1

R,RX,IM: 46
4 if divide by zero
20 if overflow

DA,X,SX,RA,SR,BX: 47 + rd(src)
5 + rd(src) if divide by zero
21 + rd(src) if overflow

DIVU [HL,]src src = R.RX.IM,DA,X,
SX,RA,SR,BX

R.RX.IM: 34
' 4 if divide by zero

•

13 if overflow
DA,X,SX.RA.SR.BX: 35 + rd(src)

5 + rd(src) if divide by zero
14 + rd(src) if overflow

EXTS [A] 4

INC dst
«

dst= R,RX,IR,DA,X,
SX,RA,SR,BX

R.RX: 3
IR,DA,X,SX.RA.SR.BX: 4 + rd(dst) + wr(dst)

MULT [A.]src src = R,RX,IM,IR,DA,
X,SX,RA,SR,BX

R.RX.IM: 17*
IR,DA,X,SX.RA.SR.BX: 18 + rd(src)*

* add 1 if src < 0

-

See Table E-1 Note on page E-10.

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

8-BIT ARITHMETIC AND LOGIC GROUP (Continued)

MULTU [A,]src src = R,RX,IM,IR,DA,
X,SX,RA,SR,BX

R.RX.IM: 17
IR,DA,X,SX,RA,SR,BX: 18 + rd(src)

NEG [A] 3

OR [A,]src src= R,RX,IM,IR,DA,
X,SX,RA,SR,BX

, R,RX,IM: 2
IR,DA,X,SX,RA,SR,BX: 3 + rd(src)

SBC [A,]src src = R,RX,IM,IR,DA,
X,SX,RA,SR,BX

R,RX,IM: 2
IR,DA,X,SX,RA,SR,BX: 3 + rd(src)

SUB [A.Jsrc src = R,RX,IM,IR,DA,
X,SX,RA,SR,BX

R.RXJM: 2
IR,DA,X,SX,RA,SR,BX: 3 + rd(src)

XOR [A,]src src = R,RX,IM,IR,DA,
X,SX,RA,SR,BX

R.RX.IM: 2
IR,DA,X,SX,RA,SR,BX: 3 + rd(src)

16-BIT ARITHMETIC AND LOGIC GROUP

ADC dst.src dst = HL
src = BC.DE.HL.SP

3

-

0 r

dst = IX
src = BC.DE.IX.SP

3

or

dst = IY
src = BC,DE,IY,SP

3

ADD dst.src dst = HL
src = BC.DE.HL.SP

3

or

dst = IX
src 4-BC.DE.IX.SP

3

or

dst = IY
src = BC,DE.IY,SP

3

ADD dst.A dst = HL.IX.IY 3

ADDW[HL,]src src = RR,IM,DA,X,RA RR.IM: 3
DA.X.RA: 3 4- rd(src)

CPW[HL,]src src = RR,IM,DA,X,RA RR.IM: 3
DA.X.RA: 3 4- rd(src)

DECW dst dst = RR.IR,DA,X,RA RR: 3
IR,DA.X.RA: 4 4- rd(dst) 4- wr(dst)

DEC[W] dst dst - RR 3

DIVUW [DEHL,]src

IS

See Table E-1 Note on page

src = RR,IM.DA,X,RA

E-10.

RR.IM: 51
4 if divide by zero
13 if overflow

DA.X.RA: 52 4- rd(src)
5 4- rd(src) if divide by zero
14 4- rd(src) if overflow

F.-5

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

16-BIT ARITHMETIC AND LOGIC GROUP (Continued)

DIVW [DEHL,]src src = RFt,IM,DA,X,RA

•

RR.IM: 63
4 if divide by zero
20 if overflow

DA,X,RA: 64 + rd(src)
5 + rd(src) if divide by zero
21 + rd(src) if overflow

EXTS HL 4

INCW dst dst = RR,IR,DA,X,RA RR: 3
IR,DA,X,RA: 4 + rd(dst) + wr(dst)

INC[W] dst dst = RR 3

MULTUW [HL,]src src = RR,IM,DA,X,RA RR.IM: 24* *•
DA,X,RA: 25 + rd(src)*

*add 1 if src < 0

MULTW [HL,]src src = RR,IM,DA,X,RA RR.IM: 24
DA.X.RA: 25 + rd(src)

NEG HL 3

SBC dst,src dst = HL
src = BC,DE,HL,SP

3

or

dst = IX
src = BC.DE.IX.SP

3

or

dst = 1Y
src = BC,DE,IYSP

3

SUBW [HL,]src• * ' * -* * » . , ' • •* * 1 src = RR.IM,DA.X.RA RR.IM: 3
DA.X.RA: 3 + rd(src)

See Table E-1 Note on page E-10.

**•

E-6

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

BIT MANIPULATION, ROTATE AND SHIFT GROUP

BIT b.dst dst = R, IR.SX R: 2
IR.SX: 3 + rd(dst)

RES b.dst dst = R,IR,SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

RLdst dst = R.IR.SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

RLA 2

RLC dst . dst = R,IR,SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

RLCA 2

RLD 5 + rd(IR) + wr(IR)

RR dst dst = R,IR.SX R: 2
■ IR.SX: 4 + rd(dst) + wr(dst)

RRA 2

RRC dst dst = R,IR.SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

RRCA 2

RRD 5 + rd(IR) + wr(IR)

SET b.dst dst = R,IR.SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

SLA dst dst = R,IR.SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

SRA dst dst = R, IR.SX R: 2
IR.SX: 4 + rd(dst) + wr(dst)

SRL dst dst = R,IR.SX
*

R: 2
IR.SX: 4 + rd(dst) + wr(dst)

TSET dst dst = R,IR.SX R: 3
IR.SX: 1 + rd(dst) + wr(dst)

See Table E-1 Note on page E-1Q.

>

>

* * •

E-7

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

PROGRAM CONTROL GROUP

CALL cc.dst
i

dst= IR.DA.RA cc not true: 3
IR.DA: 11 + wr(IR)
RA: 12 + wr(IR)

F*
F

CALL dst dst = IR.DA.RA IR.DA: 11 + wr(IR) F
RA: 12 + wr(IR) F

CCF 2

DJNZ dst dst = RA B is zero: 6
B is non-zero: 7 F

JAF dst dst = RA AF'not in use: 3
AF'in use: 4 F

JAR dst - , . dst = RA Alternate file not in use: 3
Alternate file in use: 4 F

JP cc.dst dst = IR.DA.RA cc not true: 3
cc true: 4 F

JPdst dst = IR.DA.RA 4 F

JR cc.dst dst = RA cc not true: 3
cc true: 4 F

JR dst dst = RA 4 F

RET 9 + rd(IR) F

RET cc cc not true: 3
• cc true: 9 + rd(IR) F

RST dst dst = DA 9 + wr(IR) f

SC nn 1 + System Call Trap

SCF 2

* “ F” indicates that the pipeline is flushed when that instruction is executed.
See Table E-1 Note on page E-10.

V

f

E-8

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

INPUT/OUTPUT INSTRUCTION GROUP

IN dst,(C) dst = R1RX,DA,X,RA,SR,BX R,RX: 3 + in()
DA.X.RA.SR.BX: 4 + in() + wr(dst)

IN A,(n) 5 + in()

IN[W] HL,(C) 3 + in()

IND 8 + in() + wr(IR)

INDW • 8 + in() + wr(IR)
#

INDR 8 + in() + wr(IR), each iteration

INDRW
<

8 + in() + wr(IR), each iteration

INI 8 + in() + wr(IR)

INIW 8 + in() + wr(IR)

INIR 8 + in() + wr(IR), each iteration

INIRW ., , *+ *■ . • •• “ V . • • • * ► ' v ¥ * •» ► * *. 8 + in() + wr(IR), each iteration

OUT (C).src src = R.RX.DA.X.RA.SR.BX R,RX: 3 + out()
DA.X.RA.SR.BX: 3 + rd(src) + out()

OUT (n),A 5 + out()

OUT[W](C),HL 3 + out()

OUTD 8 + rd(IR) + out()

OUTDW 8 + rd(IR) + out()

OTDR 8 + rd(IR) + out(), each iteration

OTDRW 8 + rd(IR) + out(), each iteration

OUTI 8 + rd(IR) + out()

OUTIW 8 4- rd(IR) + out()

OTIR - 8 + rd(IR) + out(), each iteration

OTIRW 8 + rd(IR) + out(), each iteration

TSTI (C) 3 + in()

See Table E-1 Note on page E-10.

%

E-9

Table E-1. Instruction Execution Times (Continued)

Instruction Addressing Modes Execution Time

CPU CONTROL GROUP

Dl mask mask = Hex value 3 + out(l)

El mask mask = Hex value 3 + out(l)

HALT 11 + rd(halt) minimum

IMp p = 0,1,2,3 3

LD dst.src dst = A
src = l,R

2

LD dst.src dst = l,R
src = A

2

LDCTL dst.src dst = (C),USP (C): 4 + out(l) F*
src = HL,IX,IY USP: 2

‘ ' • ’•........... ' ‘ or
• " ’• 1 «i». . *- - ■ •* .’ * . t ?>.*•' ' 1 1. • * * •

dst = HL,IX,IY (C): 3 + in(l)
src = (C),USP USP: 2

NOP 2

PCACHE 2 F

RETI Z-BUS: 8 + rd(IR) F
Z80:8 + rd(reti) + rd(IR) F

RETIL 14 + 2*rd(IR) + out(l) F

RETN 7 + rd(IR) F

* “ F” indicates that the pipeline is flushed when that instruction is executed.

NOTES:

1. This table assumes that the instruction has been fetched, decoded, and is ready for execution. The execution time for instructions
that cause the pipeline to be flushed do not include the time necessary to fetch and decode the following instruction.

2. This table assumes that the PAUSE input is inactive. If PAUSE is active, the execution unit will wait before beginning the next
instruction.

3. The bus is assumed to be idle when the execution unit makes a request for a transaction.
4. This table assumes that no exceptions occur during instruction execution except where indicated.

E-10

Table E-2. Extended Instruction Execution Times

Instruction Addressing Modes Execution Time

EXTENDED INSTRUCTION GROUP TEMPLATE FETCH (EPU ENABLE BIT SET TO 1)

Aligned template 7 + epu(ifl) + epu(ifn) + out(l)

Unaligned template 7 + epu(ifl) + 2*epu(ifn) + out(l)

EXTENDED INSTRUCTION GROUP

EPU I (Internal Operation) 4 + p F*

EPUF (CPU<-EPU) 6 + p + epu(cpu) F

MEPU dst (Memory-EPU) dst = IR,DA,X,RA,SR,BX 5 + p + k*[3 + epu(wr)] F

EPUM src (EPU•«-Memory) src = IR,DA,X,RA,SR,BX 5 + p + k*[3 + epu(rd)] F

* “F” indicates that the pipeline is flushed when that instruction is executed.

NOTES:

1. Additional cycles are necessary for address computation in the case of EPU-to-Memory and Memory-to-EPU instructions, as shown
below.

, , , . - . - . • i • - * - ... 1 • . > : '■ -- V- . V < " (i* ■ . ’ *»■ — - ~w * ■

IR,DA " - no additional cycles
X,SX,RA,SR 1 additional cycle
BX 2 additional cycles

2. The notation "p” in the table is the number of pause cycles added to the bus cycle.
3. The notation “k" in the table is a function of n, the number of bytes to be transferred that is specified in the template, and the address

of the source or destination as shown below.

n is odd k = (n+ 1)/2
n is even and aligned k = n/2
n is even and unaligned k = (n = 2)/2

4. See “Notes” from Table E-1.

<«. * *
. * * '

Table E-3. Interrupt, Trap, and Special Condition Execution Times

Type Execution Time

INTERRUPTS

NMI in Modes 0,1,2 13 + iack(nmi012) + in(l) + out(l) + wr(IR)

Mode 0 9 + out(l) + [iack(mO) for each byte of opcode]

Mode 1 13 + iack(m1) + in(l) + wr(IR) + out(l)

Mode 2 16 + iack(m2) + in(l) + wr(IR) + rd(IR) -l- out(l)

Mode 3 Nonvectored 28 + iack(m3) + in(l) + 3*wr(IR) +2*rd(IR) + out(l)

Mode 3 Vectored 31 + iack(m3) + in(l) + 3*wr(IR) +2*rd(IR) + out(l)

On-Chip (Mode 3) 28 + iack(m3) + in(l) + 3*wr(IR) +2*rd(IR) + out(l)

TRAPS

Single-Step 26 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)

Breakpoint-on-Halt 26 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)

Division Exception 25 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)

Stack Overflow Warning 26 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)

Access Violation 25 + in(l) +2*wr(IR) + 2*rd(IR) + out(l) .

System Call 30 + in(l) +3*wr(IR) + 2*rd(IR) + out(l)

Privileged Instruction 26 + in(l) +2*wr(IR) + 2*rd(IR) + out(l)

EPU — Memory 38 + in(l) +4*wr(IR) + 2*rd(IR) + out(l)

Memory — EPU 38 + in(l) +4*wr(IR) + 2*rd(IR) + out(l)

A - E P U 31 + in(l) + 3*wr(IR) + 2*rd(IR) + out(l)

EPU Internal Operation 31 + in(l) +3*wr(IR) + 2*rd(IR) + out(l)

MISCELLANEOUS

FATAL 15 + out(l) + rd(halt) minimum ., ,

RESET 3 + rd(reset) + out(l) minimum

EPU Data Page Fault 1 + epu(ifl) and then Access Violation trap

NOTES:

1. Additional cycles are necessary for address computation in the case of EPU-to-Memory and Memory-to-EPU traps, as shown
below.

IR.DA no additional cycles
X.SX.RA.SR 1 additional cycle
BX 2 additional cycles

2. The pipeline is flushed at the end of any interrupt or trap sequence.

t

E - 1 2

Table E-4. Instruction Fetch and Decode Timing

Condition 1 x Bus Timing 2 x Bus Timing 4 x Bus Timing

First byte, cache 4 4 - 4

First byte, external . 9 + w 12 + 2w + (0-1) 17 + 4w + (0-3)

First byte, burst 12 + w 18 + 2w + (0-1) 29 + 4w + (0-3)

Subsequent byte, cache 1 1 1

Subsequent byte, external 5 + w 8 + 2w + (0-1) 13 + 4w + (0-3)

Subsequent byte, burst 8 + w 14 + 2w + (0-1) 25 + 4w + (0-3)

NOTES:

1 .

2 .

3.

4.

5.

6.

The term “first” means the first byte fetched following a flushed pipeline. All other bytes are “subsequent” . With a full pipeline, only
the execution times are necessary.
With a 16-bit external bus, the prefetch unit tries to fetch words from external memory though bytes are transferred to the pipeline.
Bytes other than the one requested are placed in cache.
A burst transfer transfers a four-word block starting with the word with the three least significant bits being zero. The appropriate byte
is transferred to the decoder as it is written to the cache. The execution unit of the pipeline can begin execution prior to the burst
transaction completion if the necessary bytes are fetched during the early part of the burst transaction.
The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will

, , • <> » »* 'A1*

be half of the sum of the minimum and maximum numbers in parentheses.
The notation "w” in the transaction tables is the number of WAIT states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.
Examples of instruction fetch/decode time (assuming flushed pipeline and 1 x bus timing):

a) Two-byte instruction in cache
b) Two-byte instruction both bytes not in cache
c) Two-byte instruction, first byte in cache, second not in cache
d) Four-byte instruction in cache
e) Four-byte instruction not in cache, no burst, not cacheable
f) Four-byte instruction not in cache, burst, cacheable
g) Six-byte instruction, burst, first two bytes in cache

[4 + 1] processor cycles
[(9 + w) + (5 + w)]
[4 + (5 + w)]
[4 + 1 + 1 + 1] processor cycles
[9 + w + 3 * (5 + w)] processor cycles
[12 + W + 1 + 1 + 1]
[4 + 1 + (8 + w) + 1 + 1 + 1]

Table E-5. Data Read Timing — rd(src), rd(dst), and rd(IR)

Condition 1 x Bus Timing 2x Bus Timing 4 x Bus Timing

Byte Hit 5 5 5
Byte Miss 8 + w 11 + 2w + (0-1) 16 + 4w + (0 -3)

Aligned Word Hit 5 5 5
Aligned Word Miss 8 + w 11 + 2w + (0-1) 16 4~ 4w 4~ (0 -3)

Unaligned Word Hit Hit 9 9 . . 9
Unaligned Word Miss Hit 12 + w 15 + 2w + (0-1) 20 + 4w + (0 -3)

Unaligned Word Hit Miss 12 + w 15 + 2w + (0-1) 20 4~ 4w 4~ (0—3)

Unaligned Word Miss Miss 15 + w 21 + 2w + (0 -2) 31 + 4w + (0 -6)

TSET (cache) 8 W' 11 -f- 2w 4- (0—1) 16 4- 4w 4- (0—3)

TSET (fixed memory) 6 6 6

Page Fault 4 + Access Violation trap 4 + Access Violation trap 4 + Access Violation trap

NOTES:

1. Additional cycles are necessary for address computation, as shown below.

IR,DA no additional cycles
X,SX,RA,SR 1 additional cycle
BX 2 additional cycles

2. A word is aligned if the address is even and the transfer is over a 16-bit bus. It is otherwise unaligned.
3. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will

be half of the sum of the minimum and maximum numbers in parentheses.
4. The notation “w” in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or

programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.

Table E-6. Data Write Timing — wr(src), wr(dst), and wr(IR)

Condition 1 x Bus Timing 2x Bus Timing 4 x Bus Timing

Byte 5 5

Aligned Word 5 5 5

Unaligned Word 9 + w 12 + 2w + (0-1) 17 + 4w + (0-3)

Page Fault 4 + Access Violation trap 4 + Access Violation trap 4 + Access Violation trap

NOTES:

1. Additional cycles are necessary for address computation, as shown below.

IR,DA no additional cycles
X,SX,RA,SR 1 additional cycle
BX 2 additional cycles

2. A word is aligned if the address is even and the transfer is over a 16-bit bus. It is otherwise unaligned.
3. The pipeline is flushed whenever a byte being written is valid in the cache.
4. In the unaligned word case where the first byte is valid in cache, the execution time is 10 cycles with zero or one wait states and

9 + w cycles for two or more wait states.
5. The number in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will

be half of the sum of the minimum and maximum numbers in parentheses.
6. The notation “w” in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or

programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.

E-14

Table E-7. I/O Read and Write Timing

Type 1 x Bus Timing 2 x Bus Timing 4 x Bus Timing

in(l) 5 5 5

in () 9 + w 13 + 2w + (0-1) 20 + 4w + (0-3)

wr(l) 5 5 5

wr() 5 5 5

NOTES: •

•
•

*
C\J

C
O

The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.
The notation “w" in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.
in(l) and wr(l) are performed internally within the Z280 MPU.

Table E-8. EPU Read and Write Timing

Type 1 x Bus Timing 2 x Bus Timing 4 x Bus Timing

epu(ifl) 8 + w 11 + 2w + (0-1) 16 + 4w + (0-3)

epu(ifn) 8 + w 11 + 2w + (0-1) 16 + 4w + (0-3)

epu(cpu) 9 + w 13 + 2w + (0-1) 20 + 4w + (0-3)

epu (wr) 10 + w 15 + 2w + (0-1) 24 + 4w + (0-3)

epu(rd) 8 + w 11 + 2w + (0-1) 16 + 4w + (0-3)

NOTES:

1.

2.

The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.
The notation “w” in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.

Table E-9. Interrupt Acknowledge Timing «

Type 1 x Bus Timing 2 x Bus Timing 4 x Bus Timing

iack(nmi012) 4 4 4

iack(mO) 8 + w 13 + 2w + (0-1) 22 + 4w + (0-3)

iack(m1) 10 + w 15 + 2w + (0-1) 24 + 4w + (0-3)

iack(m2) 10 + w 15 + 2w + (0-1) 24 + 4w + (0-3)

iack(m3) 10 + w 15 + 2w + (0-1) 24 + 4w + (0-3)

NOTES:

1. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
be half of the sum of the minimum and maximum numbers in parentheses.

2. The notation "w” in the transaction tables is the number of wait states added to the bus cycle that are either externally generated or
programmably added. Wait states that are an integral part of the transaction (e.g., one wait state for I/O transactions) should not be
included.

3. iack(nmi012) is for NMI in modes 0, 1, and 2.
iack(mO) is for mode 0 interrupts.

E-15

Type

HALT Transaction

RESET Transaction

RETI Transaction

Table E-10. Miscellaneous Transaction Timing

1 x Bus Timing 2x Bus Timing 4 x Bus Timing

6

21 + w 31 + 2w + (0-2) 49 + 4w + (0—6)

n o t e s .

1. The numbers in parentheses depend on the phase relationship between the transaction request and the bus clock. The average will
t)G helf of the sum of the minimum and maximum numbers in parentheses.

2. The notation w in the transaction tables is the number of WAIT states added to the bus cycle in addition to any automatically
inserted WAIT states. This includes any WAITs added under program control.

«1
v %

*•

/

E-16

Appendix F.
Compatible Peripheral Families

The Z280 MPU supports two different types of bus
interface: the Z80-Bus and the Z-BUS. Families
of peripheral devices are available for both types
of component interconnect buses*

The Z80 Bus configurations of the Z280 MPU have
two compatible peripheral families: the Z8400 and
Z80Q0/Z8500 peripheral families (Tables F-1 and
F-2). The Z8400 family of devices were originally
designed to support the Z80-9us. The Z8000 series
of peripherals are designed for systems employing
multiplexed address/data buses, and are also
easily interfaced to Z80-Bus Z8000 MPU systems*
The Z85Q0 peripheral family is identical to the

Z8000 family, except the devices are configured to
interface to non-multiplexed buses: the Z8500
series devices can be used in Z280 MPU systems
where the address/data bus is de-multiplexed
external to the processor*

The Z-BUS versions of the Z280 MPU are supported
by the Z8000/Z8500 peripheral family (Table F-2).
These devices interface directly to the Z-BUS.

Refer to the Zilog Components Data Book for
further information regarding these peripheral
families.

Table F-1. Z8400 Peripheral Family

Part Number Description

Z8410 DMA Direct Memory Access Controller
Z8420 PIO Parallel Input/Output Controller
Z8430 CTC Counter/Timer Circuit
Z8440/1/2 SIO Serial Input/Output Controller
Z8470 DART Dual Asynchronous

Receiver/Transmitter

Table F-2. Z8000/Z8500 Peripheral Family

Part Number Description

Z8016/Z8516 DTC Direct Memory Access Transfer Controller
Z8030/Z8530 SCC Serial Communications Controller .
Z8036/Z8536 CIO Counter/Timer and Parallel I/O Unit
Z8038 Z-FIO FIFO Input/Output Interface Unit
Z8060 Z-FIFO Buffer Unit and Z-FIO Expander
Z8065 BEP Burst Error Processor
Z8068 Z-DCP Data Ciphering Processor
Z8090/Z8590 UPC Universal Peripheral Controller

(ROM-based)
Z8094/Z8594 UPC Universal Peripheral Controller

(RAM-based)

F-1

%

access protection: A function of memory manage­
ment that controls read, write, and execute access
to memory locations, protecting proprietary or
operating system memory areas from tampering by
unauthorized users.

access protection violation: An incorrect or for­
bidden attempt to access a memory location; for
example, an attempt to write to a read-only page.
An access violation causes the CPU to abort the
current instruction and generate an Access
Violation trap.

accumulator: A register within a central
processing unit (CPU) that can hold the result of
an arithmetic or logical operation.

address space: A set of addresses that are
accessed in a similar manner. The Z280 MPU
contains four types of address spaces: CPU
register, CPU control reqister, memory, and 1/0.
The memory space can be divided into four separate
memory address spaces: system-mode program,
system-mode data, user-mode program, and user-mode
data.

addressinq mode: The way in which the location of
an operand is specified. There are nine addressing
modes in the Z280 MPU: Register, Immediate,
Register Indirect, Direct Address, Indexed, Short
Index, Base Index, Relative Address, and Stack
Pointer Relative. _

address tag: The portion of certain associative
memories that is compared aqainst a referenced
address to determine whether the matching value is
found. The address taq for a cache block is the
physical memory address.

address translation: The process of mappinq log­
ical addresses into physical addresses.

aligned address: An address that is a multiple of
an operand's size in bytes. Aligned word
addresses are a multiple of two.

associative mesaory: A memory in which data is
accessed by specifyinq a value rather than a
location. The cache is an associative memory.

Glossary
M M M n ii im r itm ii iH ii i i i iM B w w M ii ii I i i iNi m n

autodecreeent: The operation of decrementing an
address in a register by the operand's size in
bytes. The decrement amount is one for byte
operands, two for word operands.

autoincresaent: The operation of incrementing an
address in a reqister by the operand's size in
bytes. The increment amount is one for byte
operands, two for word operands.

base address: The address used, alonq with an
index and/or displacement value, to calculate the
effective address of an operand. The base address
is located in a register, the Program Counter, or
the instruction.

Base Index (BX) addressinq made: In this mode,
the contents of the base register and index regis­
ter are added to obtain the effective address.

burst transaction: The transfer of several con­
secutive items of data in one memory transaction.

bus master: The device in control of the bus.

bus request: A request for control of the bus
initiated by a device other than the bus master.

byte: A data item containing eight contiguous
bits. A byte is the basic data unit for
addressing memory and peripherals.

• • ■ . i ' i - v . : - 7 . • . ; - . J , . v*.

cache: An on-chip buffer that automatically
stores copies of recently used memory locations
(both instructions and data), allowing fast access
for memory fetches.

Central Processing Unit (CPU): The primary
functioning unit of a computer, consisting of an
ALU, control logic for decoding and executing
Instructions and controlling program flow, and
registers.

coprocessor: A processor that works synchronously
with the CPU to execute a single instruction
stream using the Extended Processing Architecture
(fPA).

destination: The register, memory location, or
device to which data are to be transferred.

G-1

Glossary

Direct Address (DA) addressing node: In this
mode, the effective address is contained in the
instruction.

displacenent: A constant value located in the
instruction that is used for calculating the
effective address of an operand.

effective address: The logical memory address of
an operand, calculated by addinq the base address,
an optional index value, and an optional
displacement.

EPU internal operation: An EPU-handled operation
that controls EPU operations but does not transfer
data.

exception: A condition or event that alters the
usual flow of instruction processing. The Z280
MPU supports three types of exception: reset,
interrupts, and traps.

Extended Processing Architecture (EPA): A CPU
facility that allows the operations defined in the
architecture to be extended by hardware or
software. If enabled, the CPU transfers EPA
instructions to an Extended Processing Unit (EPU)
for execution; if disabled, the CPU traps EPA
instructions for software emulation.

Extended Processing Unit (EPU): An external
device, that handles Extended Processing
Architecture instructions (such as floating-point
arithmetic).

flowthrough transaction: A DMA-initiated data
transfer consisting of separate read and write

, transactions. Data is temporarily stored in the
DMA channel between the read and write
transactions.

flyby transaction: A transaction controlled by
the bus master, but in which another device
transfers data to the responding device.

'A

frame: A block of physical memory used by the
memory management mechanism to map logical memory
pages.

global bus: A bus shared by tightly coupled,
multiple CPUs; the bus master is chosen by an
external arbiter device.

hit: A hit occurs when a associative memory is
searched for a value and a match is found.

identifier word: A 16-bit code saved on the
system stack during exception processing that
provides information about the cause of the
exception.

Immediate (IM) addressing mode: In this mode, the
operand is contained in the instruction.

index: A value located in a register used for
calculating the effective address of an operand.
The index value usually specifies the calculated
offset of an operand from the orgin of an array or
other data structure.

Indexed (X) addressing mode: In this mode, the
contents of an index reqister are added to a base
address contained in the instruction to obtain the
effective address.

Indirect Register (IR) addressinq mode: In this
mode, the effective address is contained in a
register.

interrupt: An asynchronous exception that occurs
when an NMI or INT line is activated, usually when
a peripheral device needs attention.

least recently used (LRU): The CPU records the
order of use for cache blocks. When a tag miss
occurs, the CPU replaces the least recently used
block.

local bus: The bus controlled by the CPU and
shared with slave processors.

logical address: The address manipulated by the
proqram. The memory management mechanism
translates logical addresses to physical
addresses.

loosely coupled CPUs: CPUs that execute
independent instruction streams and communicate
through a multi-ported peripheral, such as a Z8038
FIO I/O interface unit.

Master Status register: A 16-bit CPU control
register that contains status information
describing the current operating states of the
CPU.

• *
0 .

memory management: Ihe process of translating
logical addresses into physical addresses, plus
certain protection functions. In the Z280 MPU,
memory management is integrated into the chip.

memory-mapped I/O: An I/O device accessed in the
memory address space.

miss: A miss occurs when an associative memory is
searched for a value and no match is found.

nonmaskable interrupt: The highest priority
interrupt; cannot be disabled.

G-2

Glossary

page: A logical memory unit mapped by the memory
management mechanism to a physical memory frame.

paged translation: A method of address
translation in which the logical 3nd physical
address spaces are divided into fixed, equal-sized
units called pages and frames, respectively.
During address translation, a logical page is
mapped to an arbitrary physical frame.

physical address: The 24-bit address reguired for
accessing memory and peripherals, obtained by the
CPU's address translation hardware.

pipeline: A computer design technique in which an
instruction is executed in a sequence of stages by
different functional units. The functional units
can be operatinq on several different instructions
simultaneously, similiar to an automobile assembly
line.

prefetching: Ability of the CPU to fetch an
instruction or operand before the previous
instructions have been completed.

privileged instruction: An instruction that
performs I/O operations, accesses control
registers, or performs some other operating system
function. Privileged instructions execute in
system mode only.

Program Counter (PC): One of the two Program
Status registers; it contains the address of the
current instruction.

Program Status registers: The two registers
(Program Counter and Master Status register) that
contain the Program Status. The Program Status is
automatically saved durinq exception processing.

protection: See access protection.

read access: The type of memory access used by
the CPU for fetching data operands other than
those specified by Immediate addressing mode.

refresh: To restore information that fades away
if left alone, for example, dynamic memories must
be refreshed periodically in order to retain their
contents. ,

Register (R) addressing mode: In this mode, the
operand is in a general-purpose register.

Relative Address (RA) addressing mode: In this
mode, the displacement in the instruction is added
to the contents of the Program Counter to obtain
the effective address.

relocation: The process of mapping a logical-
address to a different physical address, so that
multiple processes can use the same logical
address for distinct physical memory locations.

request: A siqnal or message used by a device to
indicate the need for some action or resource.

reset: A CPU operatinq state or exception that
results when a reset request is signaled on the
RESET line.

responder: The device to which bus transactions
transfer data.

self-modifying program: A program that stores to
a location from which a subsequent instruction is
fetched.

semaphore: A storage location used as a Boolean
variable to synchronize the use of resources among
multiple programming tasks. A semaphore ensures
that a shared resource is allocated to only one
task at any given time.

service routine: Program code that is executed in
response to an interrupt or trap.

Short Index addressing mode: In this mode, the
contents of the IX or IY reqister are added to an
8-bit displacement contained in the instruction to
obtain the effective address of the operand.

slave processor: A processor, such as a Direct
Memory Access transfer controller, that performs
dedicated functions asynchronously to the CPU.

Source: The reqister, memory location, or device
from which data are being read.

spatial locality: The characteristic of program
behavior whereby consecutive memory references
often apply to closely located addresses.

stack: An area of memory used for temporary
storaqe and subroutine linkages. A stack uses the
first-in, last-out method for storing and
retrieving data; the last data written onto the
stack will be the first data read from the stack.

Stack Pointer (SP): A reqister indicating the top
(lowest address) of the processor stack used by
Call and Return instructions for linking
procedures. User and system modes of operation
use separate Stack Pointers, the User Stack
Pointer (USP) and System Stack Pointer (SSP).

G-3

system mode: A CPU mode of operation, used for
operatinq system functions. In this mode, the CPU
can execute privileged (and all other)
instructions.

System Stack Pointer (SSP): The Stack Pointer
used while the CPU is in system mode. User mode
programs cannot access the SSP.

tag hit: On a memory reference, a tag hit occurs
when the cache address tags are searched for the
referenced address and a match is found.

tag miss: On a memory reference, a tag miss
occurs when the cache address tags are searched
for the referenced address and no match is found.

temporal locality: The characteristic of program
behavior whereby memory references often apply to
-a location that has been referred to recently.

tightly coupled CPUs: CPUs that execute
independent instruction streams and communicate
throuqh shared memory on a common (qlobal) bus.

transaction: A basic bus operation involving the
transfer of one byte or word of data between the
CPU and a memory or peripheral device.

trap: An exception that occurs when certain
conditions, such as an access protection
violation, are detected durinq execution of an
instruction.

Glossary

unaliqned address: An address that is not a
multiple of an operand’s size in bytes. Odd
addresses are unaligned for words.

user mode: A CPU mode of operation, generally
used for application proqrams. In this mode, the
CPU cannot execute privileged instructions or
access protected memory locations.

User Stack Pointer (USP): The Stack Pointer used
while the CPU is in user mode. System mode
programs can access the USP with the Load Control
instruction.

vectored interrupt: A interrupt that uses the
low-order byte of the identifier word as a vector
to an interrupt service routine; can be disabled.

virtual memory: A memory management technique in
which the system's logical memory address space is
not necessarily the same as, and can be much
larqer than, the available physical memory.

wait state: A clock period that is added to a
memory or 1/0 transaction due to an active WAIT
siqnal. Wait states are used to prolong memory
and I/O transactions to devices with long access
times.

word: A data item containing sixteen contiguous
bits.

write access: The type of memory access used by
the CPU for storing data operands.

G-4

Index

-A-

Access violation, 1:4, 7:5
Access violation trap, 1:3, 5:3,4, 6:4,5, 7:1,2,7
Add/ 5 ubtract flag, 5:1
Address spaces, 1:2,6, 4:1,6

CPU control register space, 1:2, 2:1,2, 4:2,6
CPU register space, 1:2, 2:1,2, 4:6
I/O address space, 1:2, 2:1,4, 4:2,6
Memory address space, 1:2, 2:1,3, 4:1-6

Address translation, 2:3, 7:1-6
with program/data separation, 7:1,2,4
without program/data separation, 7:2,3

Addressing modes, 1:3, 4:1-6, 5:1,6,10, 7:2,5
Base Index (BX), 1:6, 4:1,5,6, 5:6,10, 10:7, B: 1
Direct Address (DA), 1:3, 2:4, 4:1,2, 5:6-10, 10:7
Immediate (IM), 1:3, 4:1
Indexed (X), 1:3,6, 4:1,3,6, 5:6,10, 10:7
Indirect Register (IR), 1:3,6, 2:4, 4:1,2, 5:4,6-8,10, 10:7
Program Counter Relative (RA), 1:3, 4:1,4, 5:6,8,10, 7:2,5, 10:7
Register (R, RX), 1:3, 4:1
Short Index (SX), 1:3, 4:1,3,6, 5:4,6,7
Stack Pointer Relative (SR), 1:3,6, 4:1,5, 5:6,10, 10:7

-B-

Base Index (BX) addressing mode, 1:3,6 4:1,5,6, 5:6,10, 10:7 B:1
Bit manipulation, rotate and shift instructions, 1:3, 5:1,7
Block move port, 7:6
Block transfer and search instructions, 1:3, 4:6, 5:1-5
Bootstrap mode, 3:2, 9:20-22, 11:1
Breakpoint-on-Halt trap, 1:3, 3:4, 5:3,4, 6:4-6
Burst mode, 3:3,4, 8:2, 9:10,15-17, 10:3, 12:3, 13:1,3,9, E :13
Bus conf lquration and timinq

Z-BUS, 1:1, 9:12,16, 12:1, 13:4
Z80 Bus, 1:1, 9:12,16, 12:1,2,4, A:1

Bus request, 1:4, 9:9,10, 10:1-5,8, 11:1, 12:2-3
Bus request protocols, 10:2,3
Bus Timing and Control register, 2:2, 3:1-3, 12:4,5,12,13, 13:4,5,9,13
Bus Timinq and Initialization register, 2:2, 3:1, 9:1,9, 10:2, 11:1,2,
1 2: 2- 5,1 5,1 3:2 ,4 ,5,9 ,19

Byte/Word registers, 2:1

-C-

Cache Control register, 2:2, 3:1,3,4, 8:1-4, 12:4, 13:4,9
Cache, 1:4-6, 3:3,4, 6:9, 7:1,2, 8:1-4 9:1,15, 10:8, 12:4,

Flxed-Address mode, 8:4
Memory mode, 3:3,4, 8:1-3
Organization, 3:3,4, 8:1

Carry flag, 5:1-3,7,8
Clock oscillator, 1:1,2,5, 9:1,2
Condition codes, 5:1-3
Continuous mode, 9:10,15,17,21, 12:3, 13:3

13:4,9,14, A :1 , E :1 ,13-14

1 - 1

%

Coprocessors, 10:1,6, 12:1, 13:14
and Extended Processing Architecture, 10:6

Count register, 9:9, 12-16, 11:1
Count-Time register, 9:2-6, 11:1,3
Counter ./Timer registers, 6:9,10 9:4,4

Counter/Timer Command/Status register, 9:2,3,5-9
Counter/Timer Configuration register, 9:2-5,7-9,19
Count-Time register, 9:2-6, 11:1,3
I/O addresses of, 9:7
Time Constant register, 9:2,4-7,9, 11:1

Counter/Timers, 1:4,5, 9:1-9,17,19, 10:2, 11:1,3, 12:3, 13:2
Gates and triggers, 9:2-9 ~
Linking counter/timers, 9:5,7
Operating modes, 9:3-5
Sequence of events, 9:7,8
Terminal count condition, 9:3-5,8,9,15,16

Count-Time register, 9:2-6
CPU control instructions, 5:1,9,10
CPU control register space, 1:2, 2:1,2
CPU Control registers, 3:1-6, 6:1
CPU register file, 2:1,2

Byte/Word registers, 2:1,2
Flag and accumulator registers, 2:1,2
Index registers, 2:2
Interrupt register, 2:2
Program Counter, 2:1,2
Refresh register, 2:1,2
Stack Pointers, 2:1,2

CPU register space, 1:2, 2:1,2

Daisy chain timing, 3:2,3, 8:3
Data types, 1:2,6, 2:4, 4:6
Descriptor Select port, 7:6
Destination Address register, 9:9,10,12-14,16,17, 11:1
Direct Address (DA) addressing mode, 1:3, 2:4, 4:1,2, 5:6-8,
Division Exception trap, 1:3, 3:4, 5:3, 6:4,5
DMA channels, 1:1,4,5, 3:2, 7:1, 8:2, 9 :1,9 - 1 7 ,2 1 , 1 0 :2 ,4 ,6 ,
12:2,3,13-15, 13:4,5,17,18,19

DMA linking, 9:9,12,13
DMA programming, DMAs linked to UART, 9:9,13,17,21,22
DMA programming, linked DMAs, 9:9,13,16
DMA registers, 9:12,13,15,16,21
DMA sequence of events, 9:15,16
DMA transfer mode, 9:10,11
End-of-process , 9:11-16,21, 13:2
Priority resolution, 9:12
Types of DMA operations, 9:10

DMA Flowthrough transaction, 9:9-11,15-17,21, 13:5,17
DMA Flyby transaction, 9:9-11,14,15 12:2,13, 13:2
DMA modes of operation, 9:10,11,14, 12:3, 13:3

burst mode, 9:10,15-17, 12:3, 13:3,9, E : 13
continuous mode, 9:10,15,17,21, 12:3, 13:3
single transaction mode, 9:10,17, 12:3, 13:3

DMA registers, 9:12,13,15,16,21
Count register, 9:10,12,13,14,16, 11:1,3
Destination Address register, 9:9,10,12,13,15-17, 11:1,3
DMA Master Control register, 9:9-13,15,17
DMA Transaction Descriptor reqister, 9:9,11-17
Source Address register, 9:9,10,12-17, 11:1

1 0 , 10

11:1,3,
f ... I*

1 - 2

•
•

- E -

Cnd-of-Process , 9:11-16,21, 12:3, 13:2
Exception conditions, 1:3, 5:3,4, 6:1

interrupts, 1:3,5,6, 2:2, 3:4,5, 5:3,9,10, 6:1-4,6-11, 7:1
resets, 1:3, 3:1-6, 6:1,3,11
traps, 1:3-5, 2:2, 3:4,5, 5:3,4,9,10, 6:1,4-11, 7:1

Extended instructions, 1:4, 3:5, 5:1,3,10, 6:4, 8:2,3, 10:6-9, 13:5,9,14,15
execution sequence, 10:7

Extended Instruction trap, 1:3, 3:5, 5:3,10, 6:4, 10:7, 13:14
Extended Processing Units (EPUs), 1:4, 2:3, 3:5,6, 4:6, 5:3,10, 6:4, 8:3,4,
10:6-9, 13:14,15, B:1

EPU transaction, 13:2-4,14

- F -

Fixed Address mode, 9:15
Flag register, 1:2, 2:1,2, 5:2
Flowthrough mode, 9:9-11,15-17, 13:5
Flyby mode, 9:9-11,14,15, 12:2,13, 13:2,17,18
Framing error, 9:18,20

-H-
, • . . • • , . l ■ , Jr , .• y, . * . ‘ ? ‘ f ‘ ,-L. • ' * ~ - ; , ' ' * *• ‘ • Z. ' ' ' ' ; ‘ • i • . ' . ^ ,

Half-Carry flag, 5:2

- I -

Immediate (IM) addressing mode, 1:3, 4:1,
Index registers, 2:1,2
Indexed (X) addressing mode, 1:3,6, 4:1,3,6, 5:6,7,10, 10:7
Indirect Register (IR) addressing mode, 1:3,6, 2:4, 4:1,2, 5:4,6-8,10, 10:7
Input/Output instruction group, 1:3, 5:1,9
Instruction aborts, 7:7
Instruction Execution, 5:3,4 ,

and exceptions, 5:3
and interrupts, 5:3,4
and traps, 5:3,4

Instruction set, 1:3,6, 5:12-172
binary encoding, 5:10,11
functional qroups, 5:4

Block Transfer and Search group, 1:3, 4:6, 5:1-5
CPU Control group, 5:1,9,10
Extended Instruction group, 5:1,10, 10:6,7, 13:5,9,14,15
Input/Output group, 1:3, 5:1,9
Program Control group, 5:1,7,8
Rotate, Shift, and Bit Manipulation group, 1:3, 5:1,7
8-bit Arithmetic and Logical group, 1:3, 5:1,6
8-bit Load group, 5:1,4
16-bit Arithmetic Group, 1:3, 5:1,6,7
16-bit Load and Exchange group, 5:1,5

notation, 5:10,11
Interrupt Acknowledge, 2:2, 3:2, 6:2,3,6-8, 12:2,3,12,14, 13:2-4,13,18, A:1
Interrupt and Trap handling, 1:2,5
Interrupt Mask register, 5:10
Interrupt Modes, 3:4,5, 6:1,4,6,8,9, A:1

0: 3:5, 5:10, 6:1-3,7-9, 11:1, 12:14, 13:19, A:1
1: 5:10, 6:1-3,7-9
2: 2.2, 5:10, 6:2,3,7-9, 7.2
3: 3:4,5, 5:3,9,10, 6:1,3,4,7-10, 7:1, 9:1

1 - 3

.Interrupt request, 3:4,5, 5:3, 6:1-3,6,7,9 8:3, 9:1-5,7,11,12,14,16-18,20,
12:2,3,9, 12,14, 1 3:2,10, 13,19
Interrupt register, 2:2
Interrupt Shadow register, 6:3,9
Interrupt Status register, 2:2, 3:4,5, 6:2,8-10, 11:1
Interrupt/!rap Vector Table, 6:3,4,7-9, 7:1
Interrupt/Trap Vector Table Pointer, 2:2, 3:4,5, 6:3,4,11, 7:1, 11:1,2
Interrupts, 1:3,5,6, 2:3, 3:4,5, 5:3,9,10, 6:1-4,6-11, 7:1, 9:1, 11:1,2,
12:5,12,14, 13:3,5,19, E : 1 , 12-13

maskable, 3:4, 6:1-3,7-9, 12:3,14, 13:3,19
nonmaskable, 5.4.9, 6:2,3,7-9, 12:3,14, 13:3,19

Invalidation port, 7:6
I/O

address space, 1:2, 2:1,4, 4:2,6, 9:1
Page register, 2:2,4, 3:4,5, A : 1
transaction, 3:2,5, 9:1, 10:2, 12:2,4,10, 13:2,3, E :9 ,16

U

Local Address register, 2:2, 3:1,3, 10:2,A, 12:10,15, 13:4,19
Loosely coupled multiple CPUs, 10:1,6

- M -

Master Status register (MSR), 2:2,3, 3:4,5, 4:5, 5:2,4,
12:14, 13:19, A: 1

Memory Access Violation trap 1:3, 5:3,4, 6:4,5, 7:1,2,7
Memory Address space, 1:2, 2:1-4

System, 2:3
User , 2:3

Memory management, 1:1,3,4, 7:1
Memory transaction, 12:2,5,10,13, 13:2-11,14,17,19
M M U , 1:2,4,5, 2:3, 4:1, 5:9, 6:2,5,8,11, 7:1,2,5-7, 8:2

Architecture, 7:1,2
Control registers, 7:1,5,6

MMU Master Control register, 7:1,3,5,7
Page Descriptor register, 2:3, 6:5, 7:1-7, 8:2, 11
Page Descriptor Register Pointer, 7:5,6

Multiprocessor .< ,, .< * > . . , , . . .
configurations, 1:4, 3:1
mode, 1:4, 3:1,3, 10:2,4, 11:1, 12:15, 13:19

6 :1- 1 1 ,

9:1,14

9 2

7:7, 9:4

11:1 A : 1

-0 -

Overrun error, 9:18,20,21

-P- '

Page Descriptor register, 2:3, 6:5, 7:1-7, 8:2
Page Descriptor Register Pointer, 7:5,6
Page Fault trap, 3:4, 5:4
Parity error, 9:18,20,21
Parity ./Overflow flag, 5:2,3, 9:21
Peripheral families, 1:1, F:1
Pin descriptions,

Z-BUS, 13:1-3
Z80 BUS , 12:1-3

Privileged instructions, 3:4-6, 5:3,4,10, 6:4,5, A:1
Privileged Instruction trap, 1:3, 3:4,5, 5:4, 6:4,5
Processor flags, 5:1,7,9, 6:5

Add/Subtract flag, 5:1

f

I - 4

Carry flag, 5:1,7,8
Half-Carry flag, 5:2
Parity-Overflow flag, 5:2
Sign f l a q , 5:2
Zero flag, 5:2

*

Program Control instructions, 5:1,7,8
Program Counter, 2:1,2, 3:4,5, 5:7,8,10, 6:2-4,7-11, 7:7, 10:7
Program Counter Relative (RA) addressing mode, 1:3, 4:1,4, 5:6-8,10, 7:2,5, 10:7

-R-

Reason code, 6:3,8,9
Refresh, 1:2,4,5, 10:4, 12:2-4,9,10, 13:2,4,10, A:1
Refresh controller, 9:1,2
Refresh Rate register, 1:4, 9:1,2
Refresh register, 2:1,2, A:1 ^
Register (R,' RX) addressinq mode, 1:3, 4:1, B:1
Reset, 1:3, 3:1,3-6, 5:10, 6:1,3,11, 7:5, 11:1, 12:1,3,4,9, 13:3,4,10, A
RETI transaction, 5:9,10, 6:3,9, 8:2-4, 12:2,9,14, E:10
Rotate, Shift, and Bit Manipulation instructions, 1:3, 5:1,7

-S-

Short Index (SX) addressing mode, 1:3, 4:1,3,6, 5:4,6,7, ;
Sign flag, 5:2,3
Sinqle-Step trap, 1:3, 3:4, 5:3,4, 6:4-6,8
Single transaction mode, 9:10,17, 12:3, 13:3
Slave processors, 10:1,2, 12:1
Source Address register, 9:9,10,12-17, 11:1
Stack Limit register, 6:5
Stack Pointer registers, 1:2, 2:1,2, 3:4, 5:3,4, 6:5, A:1

System, 2:2, A:1
U s e r , 2 : 2 , A:1

Stack Pointer Relative (SR) addressing mode, 1:3,6, 4:1,5,6, 5:6,10, 10:7
System Call trap, 1:3, 5:4, 6:4,5
System Configuration registers, 3:1

Bus Timing and Control register, 3:1,3
Bus Timing and Initialization register, 3:1
Cache Control register, 3:1,3,4
Local Address register, 3:1,3

System mode, 1:2,3,5,6, 2:2,3, 3:1,4-6 5:4,9, 6:2,3,5,7,8, 7:1,2,5, A:1
System Stack Limit register, 2:2, 3:4-6
System Stack Overflow Warning trap, 1:3, 3:6, 5:4,5, 6:4,5
System Stack Pointer (SSP), 2:1,2, 3:6, 4:5, 6:2, A:1
System Status registers, 3:1,4

Interrupt Status register, 3:4,5
Interrupt/Trap Vector Table Pointer, 3:4,5
1/0 Page register, 3:4,5
Master Status register (MSR), 3:4
System Stack Limit register, 2.2, 3:4-6
Trap Control register, 3:4-6

-T-

Terminal count condition, 9:3-5,8,9,15,16
Tightly coupled multiple processors, 10:1,2,4,5
Time Constant register, 9:2,4-7,9, 11:1
Trap Control register, 2:2, 3:4-6, 5:9,10, 6:4,5, 10:7, 13:14, A:1
Traps, 1:3-5, 2:2, 3:4,5, 5:1,3,4,7-10, 6:1,4-11, 7:1, 10:6, 11:1,2, 12:5,
13:2,5, E:1 ,12

Access Violation, 1 :6, 5 :3,4, 6:4-6, 7:1,2,7
Breakpoint-on-Halt, 1:6, 3:4, 5:3,4, 6:4-6
Division Exception, 1 :6, 3:4, 5:3, 6 :4,5,

1-5

• •

Extended Instruct ion , 1:6, 5:5, 5:.5,10, 6:4, 10:6-9,
Page Fault, 3:4, 5:3,4
Privileged Instruction, 1:6, 3:4-6, 5:3,4, 6:4,5
Single-Step, 1:6, 3:4, 5:3,4, 6:4-6,8
System Call, 1:6, 5:3,4, 6:4,5
System Stack Overflow Warning, 1:6, 3:5,6, 5:3-5, 6:4

-U-

UART, 1:1,4,5, 3:1,2, 9:1,17-22, 11:1,3, 12:3, 13:3
bootstrapping option, 3:2, 9:20-22
operation, 9:21
registers, 9:17,18,20

I/O addresses of, 9:20
Receive Data register, 9:17,18,20,21
Receiver Control/Status register, 9:17,18,20,21
Transmit Data register, 9:17-21
Transmitter Control/ Stat us register, 9:17-21
UART Configuration register, 9:18,19,21

receiver operation, 9:18,20, 12:3, 13:3
transmitter operation, 9:17-20, 12:3, 13:3

User mode, 1:2,5,6, 2:2,3, 3:4,5, 5:4, 6:3-5, 7:1,2,5
User Stack Pointer (USP), 2:1,2, 4:5, 5:9, A:1

-Z-

Z-BUS, 1:1, 9:2,12,16, 10:6, 12:1, 13:1-19, F:1
bus configuration and timing, 9:12,16, 12:1, 13:4
bus operation, 13:2
external interface, 12:1
pin descriptions, 13:1-3
request s , 13:2,18

g l obal , 13:18,19 .
interrupt, 13:2,18,19
local, 13:18,19

transactions, 13:2-5,9-16
DMA flyby, 13:2,17
Extended Processing Unit (EPU), 10:6, 13:2-4,14
Halt, 13:2,4,10

4 1 / 0 , 1 3 : 2 , 3,11 : ̂
Interrupt Acknowledge, 13:2-4,18
Memory, 13:2-11,14,18,19
Refresh, 13:2,4,10

Z80 Bus, 1:1, 9:2,12,16, 10:6, 12:15, 13:1, F:1
bus configuration and timing, 9:12,16, 12:4, A:1
bus operation, 12:2
external interface, 12:1
pin descriptions, 12:1-3
requests, 12:2,14

global, 12:14,15
interrupt, 12:2,14
local, 12:14,15

transactions, 12:2,4,5,9,10,12,15
DMA flyby, 12:2,13
Halt, 12:2,9,10
1/0 , 1 2 : 2 , 1 0
Interrupt Acknowledge, 12:2,12,14
Memory, 12:2,5,10,13
Refresh, 12:2,9,10
RE TI , 12:2,9, 14

Zero flag, 5:2,3*

13:14

,5, A :1

1 - 6

ZILOG DOMESTIC SALES OFFICES AND
TECHNICAL CENTERS

CALIFORNIA
A goura.........
Campbell.....
Tustin............

818-707-2160
408-370-8120
714-838-7800

COLORADO
Boulder.. 303-494-2905

FLORIDA
Largo...813-585-2533

GEORGIA
Norcross..404-448-9370

ILLINOIS
Schaumburg... 312-517-8080

NEW HAMPSHIRE
Nashua... 603-888-8590

MINNESOTA
Edina.. 612-831-7611

NEW JERSEY
Clark... 201-382-5700

OHIO
Seven H ills ...216-447-1480

PENNSYLVANIA
Ambler.. 215-653-0230

TEXAS
Dallas... 214-987-9987

WASHINGTON
Seattle.. 206-523-3591

INTERNATIONAL SALES OFFICES

CANADA
Toronto... 416-673-0634

GERMANY
M unich..49-89-672-045

JAPAN
Tokyo..81-3-587-0528

HONG KONG
Kowloon... 852-3-723-8979

KOREA
Seoul...82-2-552-5401

SINGAPORE
Singapore..65-235-7155

- TAIWAN
Taipei..886-2-741-3125

UNITED KINGDOM
Maidenhead... 44-628-392-00

© 1989 by Zilog, Inc. All rights reserved. No part of this publica­
tion may be reproduced, stored in a retrieval system, or transmit­
ted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written
permission of Zilog.

The information contained herein is subject to change without
notice. Zilog will not be responsible for any such changes. Zilog
will not be responsible for notifying any user of changes. Zilog
assumes no responsibility for the use of any circuitry or other
technology embodied in a Zilog product. No patent licenses,
industrial property rights, or other rights are implied.

Zilog will not be responsible for any damage to the user that may
result from accidents or any other reasons during operations of
the products described herein.

All specifications (parameters) are subject to change without
notice. Zilog will not be responsible for any such changes. Zilog
will not be responsible for notifying any user of changes. The ap­
plicable Zilog test documentation will specify which parameters
are tested.

Zilog, Inc. 210 Hacienda Ave., Campbell, C A 95008-6609
Telephone (408) 370-8000 T W X 910-338-7621

03-8224-03

	Table of Contents
	Chapter 1. Architectural Overview
	1.1 INTRODUCTION
	1.2 MPU ARCHITECTURAL FEATURES
	1.2.1 System and User Modes
	1.2.2 Address Spaces
	1.2.3 Data Types
	1.2.4 Addressing Modes
	1.2.5 Instruction Set
	1.2.6 Exception Conditions
	1.2.7 Memory Management
	1.2.8 Cache Memory
	1.2.9 Refresh
	1.2.10 On-Chip Peripherals
	1.2.11 Multiprocessor Mode
	1.2.12 Extended Instruction Facility

	1.3 BENEFITS OF THE ARCHITECTURE
	1.3.1 High Throughput
	1.3.2 Integration of Systeai Functions
	1.3.3 Operating System Support
	1.3.5 Compiler Efficiency
	1.3.4 Code Density

	1.4 SUMMARY

	Chapter 2. Address Spaces
	2.1 INTRODUCTION
	2.2 CPU REGISTER SPACE
	2.3 CPU CONTROL REGISTER SPACE
	2.4 MEMORY ADDRESS SPACES
	2.5 I/O ADDRESS SPACE

	Chapter 3. CPU Control Registers
	3.1 INTRODUCTION
	3.2 SYSTEM CONFIGURATION REGISTERS
	3.2.1 Bus Timing and Initialization Register
	3.2.2 Bus Timing and Control Register
	3.2.3 Local Address Register
	3.2.4 Cache Control Register

	3.3 SYSTEM STATUS REGISTERS
	3.3.1 Master Status Register
	3.3.2 Interrupt Status Register
	3.3.3 Interrupt/Trap Vector Table Pointer
	3.3.4 I/O Page Register
	3.3.5 Trap Control Register
	3.3.6 System Stack Limit Register

	Chapter 4.Addressing Modes and Data Types
	4.1 INTRODUCTION
	4.2 ADDRESSING MODE DESCRIPTIONS
	4.2.1 Register (R9 RX)
	4.2.2 Immediate (IN)
	4.2.3 Indirect Register (IR)
	4.2.4 Direct Address (DA)
	4.2.5 Indexed (X)
	4.2.6 Short Index (SX)
	4.2.7 Program Counter (PC) Relative Address (RA)
	4.2.8 Stack Pointer Relative (SR)
	4.2.9 Base Index (BX)

	4.3 DATA TYPES

	Chapter 5. Instruction Set
	5.1 INTRODUCTION
	5.2 PROCESSORR FLAGS
	5.2.1 Carry Flag (C)
	5.2.2 Add/Subtract Flag (N)
	5.2.3 Parity/Overflow Flag (PA)
	5.2.4 Half-Carry Flag (H)
	5.2.5 Zero Flag (Z)
	5.2.6 Sign Flag (S)
	5.2.7 Condition Codes

	5.3 INSTRUCTION EXECUTION AND EXCEPTIONS
	5.3.1 Instruction Execution and Interrupts
	5.3.2 Instruction Execution and Traps

	5.4 INSTRUCTION SET FUNCTIONAL GROUPS
	5.4.1 8-Bit Load Group
	5.4.2 16-Bit Load and Exchange Group
	5.4.3 Block Transfer and Search Group
	5.4.4 8-Bit Arithmetic and Logic Group
	5.4.5 16-Bit Arithmetic Operations
	5.4.6 Bit Manipulation, Rotate and Shift Group
	5.4.7 Progran Control Group
	5.4.8 Input/Output Instruction Group
	5.4.9 CPU Control Group
	5.4.10 Extended Instruction Group

	5.5 NOTATION AND BINARY ENCODING
	ADC Add with Carry (Byte)
	ADC Add With Carry (Word)
	ADD Add Accumulator to Addressing Registe
	ADD Add (Byte)
	ADD Add (Word)
	ADDW Add Word
	AND AND
	BIT Bit Test
	CALL Call
	CCF Complement Carry Flag
	CP Compare (Byte)
	CPD Compare and Decrement
	CPDR Compare, Decrement and Repeat
	CPI Compare and Increment
	CPIR Compare, Increment and Repeat
	CPL Complement Accumulator
	CPW Compare (Word)
	DA A Decimal Adjust Accumulator
	DEC Decrement (Byte)
	DEC[W] Decrement (Word)
	DI Disable Interrupt
	DIV Divide (Byte)
	DIVU Divide Unsigned (Byte)
	DIVUW Divide Unsigned (Word)
	DIVW Divide (Word)
	DJNZ Decrement and Jump if Non-Zero
	El Enable Interrupt
	EX Exchange Accumulator/Flag with Alternate Bank
	EX Exchange Addressing Register with Top of Stack
	EX Exchange H and L
	EX Exchange HL with Addressing Register
	EX Exchange with Accumulator
	EXTS Extend Sign (Byte)
	EXTS Extend Sign (Word)
	EXX Exchange Byte/Word Registers with Alternate Bank
	HALT HALT
	IM Interrupt Mode Select
	IN Input
	IN Input Accumulator
	INC Increment (Byte)
	INC[W] Increment (Word)
	IND Input and Decrement (Byte, Word)
	INDR Input, Decrement and Repeat (Byte, Word)
	INI Input and Increment (Byte, Word)
	INIR Input, Increment and Repeat
	IN[W] Input HL
	JAF Jump On Auxiliary Accumulator/Flag
	JAR Jump On Auxiliary Register File In Use
	JP Jump
	JR Jump Relative
	LD Load Accumulator
	Load from Accumulator
	LD Load from I or R Register
	LD Load Immediate (Byte)
	LD Load Register (Byte)
	LD Load to I or R Register
	LDA Load Address
	LDCTL Load Control
	LDD Load and Decrement
	LDDR Load, Decrement and Repeat
	LDI Load and Increment
	LDIR Load, Increment and Repeat
	LDUD Load in User Data Space (Byte)
	LDUP Load in User Program Space (Byte)
	LDW Load Immediate Word
	LD[W] Load Addressing Register
	LD[W] Load Register Word
	LD[W] Load Stack Pointer
	MULT Multiply (Byte)
	MULTU Multiply Unsigned (Byte)
	MULTUW Multiply Unsigned (Word)
	MULTW Multiply (Word)
	NEG Negate Accumulator
	NEG Negate HL
	NOP No Operation
	OUT Output
	OUT Output Accumulator
	OUTD Output and Decrement (Byte, Word)
	OUT[W] Output HL
	OTIR Output, Increment and Repeat (Byte, Word)
	OUTI Output and Increment (Byte, Word)
	PCACHE Purge Cache
	POP POP
	PUSH Push
	RES Reset Bit
	RET Return
	RETI Return from Interrupt
	RETIL Return from Interrupt Long
	RETN Return from Nonmaskable Interrupt
	RL Rotate Left
	RLA Rotate Left Accumulator
	RLC Rotate Left Circular
	RLCA Rotate Left Circular (Accumulator)
	RLD Rotate Left Digit
	RR Rotate Right
	RRA Rotate Right (Accumulator)
	RRC Rotate Right Circular
	RRCA Rotate Right Circular (Accumulator)
	RRD Rotate Right Digit
	RST Restart
	SBC Subtract with Carry (Byte)
	SBC Subtract with Carry (Word)
	SC System Call
	SCF Set Carry Flag
	SET Set Bit
	SLA Shift Left Arithmetic
	SRA Shift Right Arithmetic
	SRL Shift Right Logical
	SUB Subtract
	SUBW Subtract (Word)
	TSET Test and Set
	TSTI Test Input
	XOR Exclusive OR
	EXTENDED INSTRUCTION EPU Internal Operation
	EXTENDED INSTRUCTION Load Accumulator from EPU
	EXTENDED INSTRUCTION Load EPU from Memory
	EXTENDED INSTRUCTION Load Memory from EPU

	Chapter 6. Interrupts and Traps
	6.1 INTRODUCTION
	6.2 INTERRUPTS
	6.2.1 Interrupt Mode 0
	6.2.2 Interrupt Mode 1
	6.2.3 Interrupt Mode 2
	6.2.4 Interrupt Mode 3
	6.3.8 Breakpoint-on-Halt Trap
	Missing Page 6-4, 6-5
	6.4 INTERRUPT AND TRAP HANDLING
	6.4.1 Interrupt Acknowledge
	6.4.2 Status Saving
	6.4,3 Loading New Program Status
	6.4.4 Executing the Service Routine
	6.4.5 Returning from a Service Routine
	6.5 INTERRUPT/TRAP VECTOR TABLE
	6.6 THE FATAL CONDITION

	Chapter 7. Memory Management Unit
	7.1 INTRODUCTION
	7.2 MMU ARCHIFECTURE
	7.3 PAGE DESCRIPTOR REGISTERS
	7.4 ADDRESS TRANSLATION
	7.4.1 Address Translation Without Program/Data
	7.4.2 Address Translation With Program/Data Separation

	7.5 MMU CONTROL REGISTERS
	7.6 ACCESSING PAGE DESCRIPTOR REGISTERS
	7.6.1 Descriptor Select Port
	7.6.2 Block Move Port
	7.6.3 Invalidation Port

	7.7 1 INSTRUCTION ABORTS

	Chapter 8. On-Chip Memory
	8.1 INTRODUCTION
	8.2 CACHE MMORY MODE
	8.3 FIXED-ADDRESS MODE

	Chapter 9. On-Chip Peripherals
	9.1 INTRODUCTION
	9.2 CLOCK OSCILLATOR
	9.3 REFRESH CONTROLLER
	9.4 COUNTER/TIMERS
	9.4.1 Counter/Tinter Operating Modes
	9.4.2 Gates and Triqqers
	9.4.3 Terminal Count Condition
	9.4.4 Counter/Timer Registers
	9.4.4.1 Counter/Timer Configuration Register
	9.4.4.2 Counter/Timer Command/Status Register
	9.4.5 Linking Counter/Timers
	9.4.6 Counter/Timer Sequence of Events

	9.5 DMA CHANNELS
	9.5.1 Types of DMA Operations
	9.5.2 DMA Transfer Modes
	9.5.3 End-of-Process
	9.5.4 Priority Resolution
	9.5.5 DMA Linking
	9.5,6 DMA Registers
	9.5.6.1 DMA Master Control Reqister
	9.5.6.2 DMA Transaction Descriptor Register
	9.5.6.3 Count Register
	9.5.6.4 Source Address and Destination Address Registers
	9,5.7 DMA Sequence of Events
	9.5.8 DMA Programming: Linked DMAs
	9.5.9 DMA Programming: DMAs Linked to UART

	9.6 UART
	9.6.1 Transmitter Operation
	9.6.2 Receiver Operation
	9.6.3 UART Registers
	9.6.3.1 UART Configuration Reqister
	9.6.3.2 Transmitter Control/Status Register
	9.6.3.3 Receiver Control/Status Register

	9.6,4 UART Operation

	9.7 UART BOOTSTRAPPING OPTION

	Chapter 10. Multiprocessor Configurations
	10.1 INTRODUCTION
	10.2 SLAVE PROCESSORS
	10.3 TIGHTLY COUPLED MULTIPLE PRROCESSORS
	10.3.1 The Local Address Register
	10.3.2 Bus Request Protocols
	10.3.3 Examples of the Use of the Global Bus

	10.4 LOOSELY COUPLED MULTIPLE CPUS
	10.5 COPROCESSORS AM) THE EXTENDED PROCESSING ARCHITECTURE
	10.5.1 Extended Instructions
	10.5.2 Extended Instruction Execution Sequence

	Chapter 11. Reset
	Chapter 12.Z280 Bus External Interface
	12.1 INTRODUCTION
	12.2 BUS OPERATIONS
	12.3 PIN DESCRIPTIONS
	12.4 BUS CONFIGURATION AND IIMING
	12.5 TRANSACTIONS
	12.5.1 Memory Transactions
	12.5.2 RETI Transactions
	12.5.3 Halt and Refresh Transactions
	12.5.4 I/O Transactions
	12.5.5 Interrupt Acknowledge Transactions
	12.5.6 DMA Flyby Transactions

	12.6.1 Interrupt Requests
	12.6.2 Local Bus Requests
	12.6.3 Global Bus Requests

	Chapter 13.Z-BUS External Interface
	13.1 INTRODUCTION
	13.2 BUS OPERATIONS
	13.3 PIN DESCRIPTIONS
	13.4 BUS CONFIGURATION AND TIMING
	13.5 TRANSACTIONS
	13.5.1 Memory Transactions
	13.5.1.1 Byte/Word Organization
	13.5.1.2 Memory Transaction Timing
	13.5.1.3 Burst Memory Transactions

	13.5.2 Halt and Refresh Transactions
	13.5.3 I/O Transactions
	13.5.4 Interrupt Acknowledge Transactions
	13.5.5 Extended Processing Unit (EPU)Transactions
	13.5.5.1 EPU Instruction Fetch
	13.5.5.2 Memory-EPU Transactions
	13.5.5.4 PAUSE Timing

	13.5.6 DMA Flyby Transactions

	13.6 REQUESTS
	13.6.1 Interrupt Requests
	13.6.2 Local Bus Requests
	13.6.3 Global Bus Requests

	Appendix A. Z80/Z280 Compatibility
	Appendix B. Z280 MPU Instruction Formats
	Appendix C.Instructions in Alphabetic Order
	Appendix D.Instructions in Numeric Order
	Appendix E. Instruction Timing
	Appendix F.Compatible Peripheral Families
	Glossary
	Index

